RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Ba and Ho co-doping on crystal structure, phase transformation, magnetic properties and dielectric properties of BiFeO3

        Jogender Singh, Ashish Agarwal,Ashish Agarwal,Sujata Sanghi,Tanvi Bhasin,Manisha Yadav,Umesh Bhakar,Ompal Singh 한국물리학회 2019 Current Applied Physics Vol.19 No.3

        Multiferroics having composition Bi0.80-xBa0.20HoxFeO3 (BBFO, BBHFO5, BBHFO10, BBHFO15 and BBHFO20 for x=0.0, 0.05, 0.10, 0.15 and 0.20 respectively) were synthesized by method of solid state reaction. The crystal structure has been studied using X-ray diffraction technique. The X-ray patterns show enormous transform in crystal structure at concentration x=0.20. The Rietveld refinement of XRD patterns indicates that at concentration x=0.0 sample have rhombohedral structure with R3c space group while for the concentration x=0.05, 0.10, 0.15 and 0.20, the mixed phase including rhombohedral R3c and triclinic P1 space groups were obtained with best fitting. This phase transformation in crystal structure is observed due to mismatching of ionic radii of doped ions and parent ions. Magnetic properties of all samples were carried out by using vibrating sample magnetometry. M-H hysteresis loops shows that with doping of Ba and Ho antiferromagnetic BiFeO3 (BFO) transforms into ferromagnetic. The dielectric and ferroelectric measurements were carried out which shows that dielectric constant, dielectric loss and ferroelectric properties are enhanced with co-doping of Ho in comparison of the pristine BFO due to structure deformation and decrease in oxygen vacancies with higher concentration of Ho. Significant improvement has been observed in dielectric constant and remnant magnetization values with increasing content of Ho and decrease in the dielectric loss.

      • KCI등재

        Spot-GTA 용접자세에 따른 304 스테인리스강 용융지 표면 및 용접부 형상 거동

        Kang, Nam-Hyun,Park, Yeong-Do,Cho, Kyung-Mox,Singh, Jogender,Kulkarni, Anil 대한용접접합학회 2008 대한용접·접합학회지 Vol.26 No.2

        Effects of gravitational orientation on gas tungsten arc welding (GTAW) for 304 stainless steel were studied to determine the critical factors for weld pool formation, such as weld surface deformation and weld pool shape. This study was accomplished through an analytical study of weld pool stability as a function of primary welding parameters (arc current and arc holding time), material properties (surface tension and density), and melting efficiency (cross-sectional area). The stability of weld pool shape and weld surface deformation was confirmed experimentally by changing the welding position. The arc current and translational velocity were the major factors in determining the weld pool stability as a function of the gravitational orientation. A 200A spot GTAW showed a significant variation of the weld pool formation as the arc held longer than 3 seconds, however the weld pool shape and surface morphology for a 165A spot GTAW were 'stable', i.e., constant regardless of the gravitational orientation. The cross-sectional area of the weld (CSA) was one of the critical factors in determining the weld pool stability. The measured CSA ($13.5mm^2$) for the 200A spot GTAW showed a good agreement with the calculated CSA ($14.9mm^2$).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼