RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

        Isa Ahmadi,Mahsa Najafi 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.22 No.5

        In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

      • KCI등재

        Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

        Isa Ahmadi 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.3

        The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

      • SCIESCOPUS

        Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

        Ahmadi, Isa Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.3

        The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

      • KCI등재

        Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation

        Isa Ahmadi 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.57 No.4

        Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.

      • KCI등재

        Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

        Isa Ahmadi 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.62 No.1

        In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axialtransverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.

      • Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

        Isa Ahmadi,Mohammad Naeim Moradi,Mahdi Davar Panah 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.89 No.2

        In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeamnanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson- methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

      • A nonlocal Layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler-Pasternak foundation

        Mahsa Najafi,Isa Ahmadi 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.40 No.1

        In this study, a nonlocal Layerwise theory is presented for free vibration analysis of nanobeams resting on an elastic foundation. Eringen’s nonlocal elasticity theory is used to consider the small-scale effect on behavior of nanobeam. The governing equations are obtained by employing Hamilton’s principle and Layerwise theory of beams and Eringen’s nonlocal constitutive equation. The presented theory takes into account the in-plane and transverse normal and shear strain in the modeling of the nanobeam and can predict more accurate results. The governing equations of the beam are solved by Navier's method for Simple-Simple boundary conditions and semi-analytical methods to obtain the natural frequency for various boundary conditions including Clamped-Simple (C-S), Clamped-Clamped (C-C) and Free-Free (F-F) boundary conditions. Predictions of the present theory are compared with benchmark results in the literature. Effects of nonlocal parameter, Pasternak shear coefficient, Winkler spring coefficient, boundary conditions, and the aspect ratio on the free vibration of nanobeams are studied. The flexural mode and thickness mode natural frequencies of the nanobeam are predicted. It is shown that the predictions of present method are more accurate than the equivalent single layer theories. The theoretical developments and formulation presented herein should also be served to analyze the mechanical behavior of various nanostructures with various loading and boundary conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼