RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Adaptive fuzzy sliding mode control of seismically excited structures

        Hosein Ghaffarzadeh,Keyvan Aghabalaei 국제구조공학회 2017 Smart Structures and Systems, An International Jou Vol.19 No.5

        In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is designed to reduce dynamic responses of seismically excited structures. In the conventional sliding mode control (SMC), direct implementation of switching-type control law leads to chattering phenomenon which may excite unmodeled high frequency dynamics and may cause vibration in control force. Attenuation of chattering and its harmful effects are done by using fuzzy controller to approximate discontinuous part of the sliding mode control law. In order to prevent time-consuming obtaining of membership functions and reduce complexity of the fuzzy rule bases, adaptive law based on Lyapunov function is designed. To demonstrate the performance of AFSMC method and to compare with that of SMC and fuzzy control, a linear three-story scaled building is investigated for numerical simulation based on the proposed method. The results indicate satisfactory performance of the proposed method superior to those of SMC and fuzzy control.

      • KCI등재

        Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

        Hosein Ghaffarzadeh 국제구조공학회 2013 Smart Structures and Systems, An International Jou Vol.12 No.6

        Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

      • KCI등재

        Explicit solution to the large deformation of a cantilever beam under point load at the free tip using the variational iteration method-II

        Hosein Ghaffarzadeh,Ali Nikkar 대한기계학회 2013 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.27 No.11

        This study focuses on a new analytical method called the variational iteration method-II (VIM-II) for the differential equation of the large deformation of a cantilever beam under point load at the free tip. The rotation angles as well as the horizontal and vertical displacements of a cantilever beam with large deformation are calculated in an explicit analytical form. A comparison of the results with those of some numerical and analytical methods shows the simplicity and effectiveness of VIM-II. VIM-II is proven to be a powerful technique that can be used to obtain accurate solutions that cannot be provided otherwise by perturbation and other methods. The accuracy and convergence of the method are also investigated and compared with those of other methods. The results showed good agreement between VIM-II and other methods.

      • SCIESCOPUS

        Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

        Ghaffarzadeh, Hosein Techno-Press 2013 Smart Structures and Systems, An International Jou Vol.12 No.6

        Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

      • KCI등재

        Structural identification based on substructural technique and using generalized BPFs and GA

        Hosein Ghaffarzadeh,T.Y. Yang,Yaser Hosseini Ajorloo 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.67 No.4

        In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

      • SCIESCOPUS

        Structural identification based on substructural technique and using generalized BPFs and GA

        Ghaffarzadeh, Hosein,Yang, T.Y.,Ajorloo, Yaser Hosseini Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.67 No.4

        In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

      • KCI등재

        Semi-active control of seismically excited structures with variable orifice damper using block pulse functions

        Amir Younespour,Hosein Ghaffarzadeh 국제구조공학회 2016 Smart Structures and Systems, An International Jou Vol.18 No.6

        The present study aims at proposing an analytical method for semi-active structural control by using block pulse functions. The performance of the resulting controlled system and the requirements of the control devices are highly dependent on the control algorithm employed. In control problems, it is important to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of numerical analysis in systems science and control. This work focused on the application of BPFs in the control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one of the common semi-active devices that can be used to control the response of civil Structures during seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear building frame equipped with VODs are presented. The controlled response of the frame was compared with results obtained by controlling the frame by the classical clipped-optimal control method based on linear quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic responses.

      • Jumps phenomenon elimination of a Duffing oscillator using pole placement control method

        Reza Mahmoudi,Hosein Ghaffarzadeh,T.Y. Yang 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.28 No.5

        This paper presents a numerical and analytical study in the time-frequency domain to control the bifurcation and instability in a forced Duffing oscillator by a linear state feedback control. The proposed method evolves minimizing computational expenses of analytical approaches by an approximate method to suppress the responses of the dynamical system based on pole placement theory. The instability frequency range of Duffing oscillator is identified by approximate analytical methods. Bifurcation and jump points of Duffing oscillator are identified in the frequency domain by perturbation and harmonic balance methods for average and strong nonlinearity of the system, respectively. The Caughey method is used to linearize Duffing oscillator to solve system in the state space form. A linear state feedback controller with pole placement is applied to system in the time domain. The observed controlling force is added to approximate solution equation in frequency domain which vanished bifurcation length. The results reveal that the proposed method can be beneficial in reducing dynamic responses and eliminating jump points of system with high accuracy.

      • KCI등재

        Robust decentralized control of structures using the LMI H_∞controller with uncertainties

        Roya Raji,Ali Hadidi,Hosein Ghaffarzadeh,Amin Safari 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.5

        This paper investigates the operation of the H_∞ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

      • SCIESCOPUS

        Robust decentralized control of structures using the LMI H<sub>∞</sub>controller with uncertainties

        Raji, Roya,Hadidi, Ali,Ghaffarzadeh, Hosein,Safari, Amin Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.22 No.5

        This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼