RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Structural behavior of arch dams considering experimentally validated prototype model using similitude and scaling laws

        Ahmet Can Altunışık,Ebru Kalkan,Hasan B. Başağa 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.22 No.1

        As one of the most important engineering structures, arch dams are huge constructions built with human hands and have strategical importance. Because of the fact that long construction duration, water supply, financial reasons, major loss of life and material since failure etc., the design of arch dams is very important problem and should be done by expert engineers to determine the structural behavior more accurately. Finite element analyses and non-destructive experimental measurements can be used to investigate the structural response, but there are some difficulties such as spending a long time while modelling, analysis and in-situ testing. Therefore, it is more useful to conduct the research on the laboratory conditions and to transform the obtained results into real constructions. Within the scope of this study, it is aimed to determine the structural behavior of arch dams considering experimentally validated prototype laboratory model using similitude and scaling laws. Type-1 arch dam, which is one of five arch dam types suggested at the “Arch Dams” Symposium in England in 1968 is selected as reference prototype model. The dam is built considering dam-reservoir-foundation interaction and ambient vibration tests are performed to validate the finite element results such as dynamic characteristics, displacements, principal stresses and strains. These results are considered as reference parameters and used to determine the real arch dam response with different scales factors such as 335, 400, 416.67 and 450. These values are selected by considering previously examined dam projects. Arch heights are calculated as 201 m, 240 m, 250 m and 270 m, respectively. The structural response is investigated between the model and prototype by using similarity requirements, field equations, scaling laws etc. To validate these results, finite element models are enlarged in the same scales and analyses are repeated to obtain the dynamic characteristics, displacements, principal stresses and strains. At the end of the study, it is seen that there is a good agreement between all results obtained by similarity requirements with scaling laws and enlarged finite element models.

      • KCI등재

        Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

        Ahmet C. Altunışık,Ebru Kalkan,Hasan B. Başağa 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.21 No.4

        This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼