http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Deciphering the Biodiversity of Listeria monocytogenes Lineage III Strains by Polyphasic Approaches
Hanxin Zhao,Jianshun Chen,Chun Fang,Ye Xia,Changyong Cheng,Lingli Jiang,Weihuan Fang 한국미생물학회 2011 The journal of microbiology Vol.49 No.5
Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internalin types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, IIIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The IIIB strains are phylogenetically distinct from other subpopulations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. monocytogenes-L. innocua clade.
Renlong Xiong,Yi Liu,Haitao Si,Huabei Peng,Shanling Wang,Binhan Sun,Hanxin Chen,Hyoung Seop Kim,Yuhua Wen 대한금속·재료학회 2021 METALS AND MATERIALS International Vol.27 No.10
In order to improve the work hardening capacity under low stresses and the yield strength of conventional Hadfield steels, theeffects of Si on the microstructure and work hardening behavior of the Fe‒17Mn‒1.1C‒xSi steels under both quasi-statictensile and low load impact are investigated. It is shown that the increase of the Si contents remarkably improves the yieldstrength by 36 MPa per 1 wt% Si in the investigated steel system without significant sacrifice of ductility. The decreasingeffect of Si on the stacking fault energy is strongly affected by carbon, although the variation of carbon content was small. This led to the unexpected similar stacking fault energy between 1Si and 2Si steel. With the increase of the Si contents forthe steels, the critical strain for the onset of mechanical twinning was lowered, which was controlled by the cooperationbetween the stacking fault energy and solid solution strengthening of Si. This resulted in the earlier initiation of mechanicaltwins and an increase in the twin volume fraction. Therefore, the work hardening capacities under both quasi-static tensileand low load impact tests were enhanced. It was also found that the impact deformation decreased as more mechanical twinsabsorbed the impact energy.