RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In silico Analysis and Experimental Improvement of Taxadiene Heterologous Biosynthesis in Escherichia coli

        Hailin Meng,Yong Wang,Qiang Hua,Siliang Zhang,Xiaoning Wang 한국생물공학회 2011 Biotechnology and Bioprocess Engineering Vol.16 No.2

        The biosynthesis of terpenoids in heterologous hosts has become increasingly popular. Isopentenyl diphosphate (IPP) is the central precursor of all isoprenoids, and the synthesis can proceed via two separate pathways in different organisms: The 1-deoxylulose 5-phosphate (DXP)pathway and the mevalonate (MVA) pathway. In this study,an in silico comparison was made between the maximum theoretical IPP yields and the thermodynamic properties of the DXP and MVA pathways using different hosts and carbon sources. We found that Escherichia coli and its DXP pathway have the most potential for IPP production. Consequently, codon usage redesign, and combinations of chromosomal engineering and various strains were considered for optimizing taxadiene biosynthesis through the endogenic DXP pathway. A high production strain yielding 876 ± 60 mg/L taxadiene, with an overall volumetric productivity of 8.9 mg/(L × h), was successfully obtained by combining the chromosomal engineered upstream DXP pathway and the downstream taxadiene biosynthesis pathway. This is the highest yield thus far reported for taxadiene production in a heterologous host. These results indicate that genetic manipulation of the DXP pathway has great potential to be used for production of terpenoids, and that chromosomal engineering is a powerful tool for heterologous biosynthesis of natural products.

      • KCI등재

        In silico Improvement of Heterologous Biosynthesis of Erythromycin Precursor 6-Deoxyerythronolide B in Escherichia coli

        Hailin Meng,Zhiguo Lu,Yong Wang,Xiaoning Wang,Siliang Zhang 한국생물공학회 2011 Biotechnology and Bioprocess Engineering Vol.16 No.3

        The heterologous biosynthesis of 6-deoxyerythronolide B (6dEB), a key intermediate in the biosynthesis of erythromycin, has recently been achieved in Escherichia coli, but the experimental product yield remains low. In this study, in silico strategies were adopted to evaluate and improve the biosynthesis of 6dEB in this strain. The theoretical capability of E. coli to produce 6dEB was first evaluated by analyzing the maximum theoretical molar yield (MTMY) of 6dEB utilizing three carbon sources,glucose, propionate and glycerol. Although propionate is presently most often used experimentally, our results indicated that glucose would be the most feasible substrate for 6dEB production from economic and long-term standpoints. Compared with Saccharomyces cerevisiae and Bacillus subtilis, E. coli was found to be a better heterologous host for the biosynthesis of 6dEB due to the higher MTMY value under the same conditions. Two strategies,including a flux distribution comparison analysis (FDCA)and linear minimization of metabolic adjustment based (LMOMA-based) methods, were proposed and employed for in silico strain improvement of 6dEB production, which yielded several potential gene targets for future experimental validation. In a further analysis, increasing the specific growth rate (SGR) or the non-growth associated maintenance (NGAM) was found to decrease the MTMY; while increasing the specific oxygen uptake rate (SOUR) or the specific carbon source uptake rate (SCUR) increased the MTMY. Taken together, our findings identified key factors directly affecting the MTMY of 6dEB production, which will guide future experimental research or even the industrial production of 6dEB.

      • KCI등재

        An Investigation of the Terahertz Absorption Characteristics of a Graphene Oxide Aqueous Solution Using Microfluidic Technology

        Ningyi Cai,Boyan Zhang,Qinghao Meng,Siyu Qian,Bo Su,Hailin Cui,Shengbo Zhang,Cunlin Zhang 한국광학회 2023 Current Optics and Photonics Vol.7 No.2

        The vibratory and rotational levels of many biological macromolecules lie in the terahertz (THz) band, which means that THz techniques can be used to identify and detect them. Moreover, since the biological activity of most biomolecules only becomes apparent in aqueous solution, we use microfluidic technology to study the biological properties of these biomolecules. THz time-domain spectroscopy was used to study the THz absorption characteristics of graphene oxide (GO) aqueous solution at different concentrations and different exposure times in fixed electric or magnetic fields. The results show that the spectral characteristics of the GO solution varied with the concentration: as the concentration increased, the THz absorption decreased. The results also show that after placing the solution in an external electric field, the absorption of THz first increased and then decreased. When the solution was placed in a magnetic field, the THz absorption increased with the increase in standing time. In this paper, these results are explained based on considerations of what is occurring at the molecular scale. The results of this study provide technical support for the further study of GO and will assist with its improved application in various fields.

      • KCI등재

        MLL4 Regulates the Progression of Non-Small-Cell Lung Cancer by Regulating the PI3K/AKT/SOX2 Axis

        Yang Yang,Rongfang Qiu,Qiaoyou Weng,Ziwei Xu,Jingjing Song,Siyu Zhao,Miaomiao Meng,Dengke Zhang,Chunli Kong,Hailin Wang,Min Xu,Zhongwei Zhao,Jiansong Ji 대한암학회 2023 Cancer Research and Treatment Vol.55 No.3

        Purpose Mixed-lineage leukemia protein 4 (MLL4/KMT2D) is a histone methyltransferase, and its mutation has been reported to be associated with a poor prognosis in many cancers, including lung cancer. We investigated the function of MLL4 in lung carcinogenesis. Materials and Methods RNA sequencing (RNA-seq) in A549 cells transfected with control siRNA or MLL4 siRNA was performed. Also, we used EdU incorporation assay, colony formation assays, growth curve analysis, transwell invasion assays, immunohistochemical staining, and in vivo bioluminescence assay to investigate the function of MLL4 in lung carcinogenesis. Results We found that MLL4 expression was downregulated in non–small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues and tended to decrease with disease stage progression. We analyzed the transcriptomes in control and MLL4- deficient cells using high-throughput RNA deep sequencing (RNA-seq) and identified a cohort of target genes, such as SOX2, ATF1, FOXP4, PIK3IP1, SIRT4, TENT5B, and LFNG, some of which are related to proliferation and metastasis. Our results showed that low expression of MLL4 promotes NSCLC cell proliferation and metastasis and is required for the maintenance of NSCLC stem cell properties. Conclusion Our findings identify an important role of MLL4 in lung carcinogenesis through transcriptional regulation of PIK3IP1, affecting the PI3K/AKT/SOX2 axis, and suggest that MLL4 could be a potential prognostic indicator and target for NSCLC therapy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼