RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials

        Chore, H.S.,Joshi, M.P. Techno-Press 2015 Advances in concrete construction Vol.3 No.3

        Concrete is the most widely used material of construction. Concrete gained the popularity as a construction material due to the easy availability of its component materials, the easy formability, strength and rigidity upon setting and curing.In construction industry, strength is the primary criterion in selecting a concrete for a particular application. Now a days, the substantial amount of waste materials, containing the properties of the Pozzolana, is being generated from the major industries; and disposal of such industrial wastes generated in abundance is also a serious problem from the environmental and pollution point of view. On this backdrop, efforts are made by the researchers for exploring the possible utilization of such waste materials in making the sustainable construction material. The present paper reports the experimental investigations to study the strength characterization of concrete made from the pozzolanic waste materials. For this purpose, the Pozzolanic materials such as fly ash and ground granulated blast furnace slag were used as a cement replacing materials in conjunction with ordinary Portland cement. Equal amount of these materials were used in eight trial mixes with varying amount of cement. The water cement ratio was also varied. The chemical admixture was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days' were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days were evaluated. The study corroborates that the pozzolanic materials used in the present investigation along with the cement can render the sustainable concrete.

      • KCI등재

        Prediction of compressive strength of concrete using multiple regression model

        H.S. Chore,N.L. Shelke 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.45 No.6

        In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

      • Interactive analysis of a building fame resting on pile foundation

        Chore, H.S. Techno-Press 2014 Coupled systems mechanics Vol.3 No.4

        The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

      • KCI등재
      • Building frame-pile foundation-soil interactive analysis

        Chore, H.S.,Ingle, R.K.,Sawant, V.A. Techno-Press 2009 Interaction and multiscale mechanics Vol.2 No.4

        The effect of soil-structure interaction on a simple single storeyed and two bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the three dimensional finite element analysis with realistic assumptions. The members of the superstructure and substructure are descretized using 20 node isoparametric continuum elements while the interface between the soil and pile is modeled using 16 node isoparametric interface elements. Owing to viability in terms of computational resources and memory requirement, the approach of uncoupled analysis is generally preferred to coupled analysis of the system. However, an interactive analysis of the system is presented in this paper where the building frame and pile foundation are considered as a single compatible unit. This study is focused on the interaction between the pile cap and underlying soil. In the parametric study conducted using the coupled analysis, the effect of pile spacing in a pile group and configuration of the pile group is evaluated on the response of superstructure. The responses of the superstructure considered include the displacement at top of the frame and moments in the superstructure columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation used in the study. The percentage variation in the values of displacement obtained using the coupled and uncoupled analysis is found in the range of 4-17 and that for the moment in the range of 3-10. A reasonable agreement is observed in the results obtained using either approach.

      • Non-linear analysis of pile groups subjected to lateral loads using 'p-y' curve

        Chore, H.S.,Ingle, R.K.,Sawant, V.A. Techno-Press 2012 Interaction and multiscale mechanics Vol.5 No.1

        The paper presents the analysis of two groups of piles subjected to lateral loads incorporating the non-linear behaviour of soil. The finite element method is adopted for carrying out the parametric study of the pile groups. The pile is idealized as a one dimensional beam element, the pile cap as two dimensional plate elements and the soil as non-linear elastic springs using the p-y curves developed by Georgiadis et al. (1992). Two groups of piles, embedded in a cohesive soil, involving two and three piles in series and parallel arrangement thereof are considered. The response of the pile groups is found to be significantly affected by the parameters such as the spacing between the piles, the number of piles in a group and the orientation of the lateral load. The non-linear response of the system is, further, compared with the one by Chore et al. (2012) obtained by the analysis of a system to the present one, except that the soil is assumed to be linear elastic. From the comparison, it is observed that the non-linearity of soil is found to increase the top displacement of the pile group in the range of 66.4%-145.6%, while decreasing the fixed moments in the range of 2% to 20% and the positive moments in the range of 54% to 57%.

      • SCIESCOPUS
      • Analysis of the piled raft for three load patterns: A parametric study

        Chore, H.S.,Siddiqui, M.J. Techno-Press 2013 Coupled systems mechanics Vol.2 No.3

        The piled raft is a geotechnical construction, consisting of the three elements-piles, raft and the soil, that is applied for the foundation of a tall buildings in an increasing number. The piled rafts nowadays are preferred as the foundation to reduce the overall and differential settlements; and also, provides an economical foundation option for circumstances where the performance of the raft alone does not satisfy the design requirements. The finite element analysis of the piled raft foundation is presented in this paper. The numerical procedure is programmed into finite element based software SAFE in order to conduct the parametric study wherein soil modulus and raft thickness is varied for constant pile diameter. The problems of piled raft for three different load patterns as considered in the available literature (Sawant et al. 2012) are analyzed here using SAFE. The results obtained for load pattern-I using SAFE are compared with those obtained by Sawant et al. (2012). The fair agreement is observed in the results which demonstrate the accuracy of the procedure employed in the present investigation. Further, substantial reduction in maximum deflections and moments are found in piled raft as compared to that in raft. The reduction in deflections is observed with increase in raft thickness and soil modulus. The decrease in maximum moments with increase in soil modulus is seen in raft whereas increase in maximum moments is seen in piled raft. The raft thickness and soil modulus affects the response of the type of the foundation considered in the present investigation.

      • SCIESCOPUS

        Non linear soil structure interaction of space frame-pile foundation-soil system

        Chore, H.S.,Ingle, R.K.,Sawant, V.A. Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.1

        The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.

      • Soil -structure interaction analysis of a building frame supported on piled raft

        Chore, H.S.,Siddiqui, M.J. Techno-Press 2016 Coupled systems mechanics Vol.5 No.1

        The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼