RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Self-assembled magnetic lamellar hydroxyapatite as an efficient nanovector for gene delivery

        Guangyao Xiong,Yizao Wan,Guifu Zuo,Kaijing Ren,Honglin Luo 한국물리학회 2015 Current Applied Physics Vol.15 No.7

        Magnetic lamellar hydroxyapatite (ML-HA) nanoparticles were synthesized by a template-assisted selfassembly process. The as-prepared ML-HA nanoparticles self-assembled under different conditions were characterized by XRD, TEM, cytotoxicity assessment, and DNA-loading and transfection efficiency measurements. We found that the structure and morphology of ML-HA were controlled by self-assembly conditions. The ML-HA synthesized in this work exhibited good biocompatibility. The DNA-loading capacity and z-potential of ML-HA were much lower in comparison to bare lamellar HA (L-HA) without magnetic nanoparticles. Despite that, the ML-HA with good lamellar structure showed 47% higher transfection efficiency than L-HA. Results suggested that the ordered lamellar structure is a key factor in controlling transfection efficiency and magnetization is an effective way of improving the transfection efficiency of lamellar HA. Mechanisms were proposed to interpret these experimental results. It is demonstrated that the ML-HA may be a promising gene vector to deliver DNA into the cells effectively and safely.

      • KCI등재

        Encapsulating doxorubicin-intercalated lamellar nanohydroxyapatite into PLGA nanofibers for sustained drug release

        Honglin Luo,Yang Zhang,Zhiwei Yang,Guifu Zuo,Quanchao Zhang,Fanglian Yao,Yizao Wan 한국물리학회 2019 Current Applied Physics Vol.19 No.11

        In this work, doxorubicin (DOX) was intercalated into layered nanohydroxyapatite (LHAp). The drug loaded LHAp (DOX@LHAp) was then mixed with poly(lactic-co-glycolic acid) (PLGA) and electrospun to yield DOX@ LHAp/PLGA composite scaffolds. As control, needle-like nanohydroxyapatite (nHAp) was also used to make an DOX@nHAp/PLGA composite scaffold and bare DOX was used to fabricate DOX/PLGA scaffold. The morphology, release behavior of DOX, and capability to inhibit cancer cells were assessed. The addition of DOXloaded nHAp to PLGA causes a slight decrease in the average fiber diameter of DOX@LHAp/PLGA as compared to PLGA. The in vitro drug release tests reveal a much faster release of DOX from DOX/PLGA than DOX@LHAp/ PLGA. Moreover, DOX@LHAp/PLGA displays a more sustainable release over DOX@nHAp/PLGA due to the storage of DOX in the gallery of LHAp, which is further proved by their cancer cell inhibition results. We believe that the DOX@LHAp/PLGA scaffold has potential as an implantable drug delivery system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼