RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Effect of Phytoecdysteroid on Pure Breed Performance of Silkworm Bombyx mori L.

        Trivedy, Kanika,Dhar, Anindita,Kumar, S.Nirmal,Nair, K.Sashindran,Ramesh, M.,Gopal, Nisha Korean Society of Sericultural Science 2003 International Journal of Industrial Entomology Vol.7 No.1

        Phytoecdysteroids with moulting hormone (MH) activity induce different responses in silkworms when used on different day of final instar, which can be manipulated for maximum benefit like early and uniform spinning behaviour, reducing crop loss and to increase cocoon yield. The results showed that application of this hormone on seed crop viz., CSR2, CSR4 and BL44 and BL67 in early stage of 5$^{th}$ instar i.e., at 72 hrs and 96 hrs though induced early and uniform spinning behaviour, there was an adverse effect by 9-36% on the economic characters like cocoon yield, cocoon weight, cocoon shell weight and also on fecundity etc. Application of this hormone in late stage of $5^th$ instar i.e., at the onset of spinning showed non-significant variations in some of the characters like cocoon weight, cocoon shell weight, cocoon shell ratio and fecundity. The physiological implications of phytoecdysteroid in hastening the maturation events and synchronization of spinning activities in different breeds are discussed.

      • KCI등재

        Experimental Toughness and Durability Evaluation of FRC Composite Reinforced with Steel–Polyester Fiber Combination

        Chella Gifta Christopher,Ramesh Gopal,Sasivaradhan Sadasivam,A. K. Devi Keerthika Esakki,P. Dinesh Kumar 한국콘크리트학회 2023 International Journal of Concrete Structures and M Vol.17 No.5

        This study investigates the influence of steel and polyester fibers on the mechanical and durability properties of steel–polymer hybrid fiber reinforced concrete (HyFRC) and toughness under indirect tensile loading conditions. Steel and Polyester fibers are used as a single type (FRC) and in combination (HyFRC) in an M45 grade composite with the addition of fly ash and silica fume as a supplementary cementitious material. Steel as a single fiber exhibited a 10% improvement in compressive strength for a 0.75% volume fraction and a maximum of 14% improvement for a 0.5% volume fraction in comparison to plain concrete. The toughness under split tension capacity was enhanced between 26 and 72% for hybrid fibers in comparison with polyester fiber, and it was between 10 and 18% when compared to the steel fiber reinforcement. Water sorpitivity results were improved with the presence of hybrid fiber. Electrical resistivity decreases with the increase in fiber content and the addition of steel fiber in hybrid FRC increases the conductivity value 1.65–2.23 times greater than the control concrete because of the free movement of electrons.

      • KCI등재후보
      • KCI등재

        Computational Kinetic Studies of Pyruvate Metabolism in Carboxydothermus hydrogenoformans Z-2901 for Improved Hydrogen Production

        Rajadurai Chinnasamy Perumal,Ashok Selvaraj,Saranya Ravichandran,Gopal Ramesh Kumar 한국생물공학회 2012 Biotechnology and Bioprocess Engineering Vol.17 No.3

        Hydrogen is considered as a renewable energy source and it is also regarded as future fuel. Currently,hydrogen production through a biotechnological approach is a research priority. Hydrogenogens, a microbial species,are of significant interest to researchers because of their ability to produce biological hydrogen. Carboxydothermus hydrogenoformans Z-2901 is one among the hydrogenogens that can grow anaerobically by utilizing pyruvate as a carbon source, and can produce molecular hydrogen. In the present study, we performed an in silico kinetic simulation using the available Kyoto Encyclopedia of Genes and Genomes (KEGG) model and reconstructed pyruvate metabolism in C. hydrogenoformans Z-2901. During this metabolism, dissimilation of pyruvate leads to the formation of energy co-factors, such as ATP and NAD+/NADH, and the level of these co-factors influences the specific growth rate of organism and hydrogen production. Our strategy for improving hydrogen production involves maximizing the ATP and NAD+ yield by modification of kinetic properties and adding new reactions in pyruvate metabolism through metabolic pathway reconstruction. Moreover,the influence of phosphoenol pyruvate carboxylase and pyruvate dehydrogenase enzyme concentration on cofactor productions was also simulated. The theoretical molar yield of ATP and NAD+ were obtained as 2.32 and 1.83mM, respectively, from 1 mM/mg of phosphoenol pyruvate (PEP) utilization. A higher yield of ATP is achieved when the PEP level reaches 5 mM/mg. This work also suggests that PEP can be considered as an alternative substrate. In conclusion, the simulation results reported in this paper can be applied to design and evaluate strategies of strain construction for optimal hydrogen yield in C. hydrogenoformans. Hydrogen is considered as a renewable energy source and it is also regarded as future fuel. Currently,hydrogen production through a biotechnological approach is a research priority. Hydrogenogens, a microbial species,are of significant interest to researchers because of their ability to produce biological hydrogen. Carboxydothermus hydrogenoformans Z-2901 is one among the hydrogenogens that can grow anaerobically by utilizing pyruvate as a carbon source, and can produce molecular hydrogen. In the present study, we performed an in silico kinetic simulation using the available Kyoto Encyclopedia of Genes and Genomes (KEGG) model and reconstructed pyruvate metabolism in C. hydrogenoformans Z-2901. During this metabolism, dissimilation of pyruvate leads to the formation of energy co-factors, such as ATP and NAD+/NADH, and the level of these co-factors influences the specific growth rate of organism and hydrogen production. Our strategy for improving hydrogen production involves maximizing the ATP and NAD+ yield by modification of kinetic properties and adding new reactions in pyruvate metabolism through metabolic pathway reconstruction. Moreover,the influence of phosphoenol pyruvate carboxylase and pyruvate dehydrogenase enzyme concentration on cofactor productions was also simulated. The theoretical molar yield of ATP and NAD+ were obtained as 2.32 and 1.83mM, respectively, from 1 mM/mg of phosphoenol pyruvate (PEP) utilization. A higher yield of ATP is achieved when the PEP level reaches 5 mM/mg. This work also suggests that PEP can be considered as an alternative substrate. In conclusion, the simulation results reported in this paper can be applied to design and evaluate strategies of strain construction for optimal hydrogen yield in C. hydrogenoformans.

      • Micropropagation and Quantification of Bioactive Compounds in Mertensia maritima (L.) Gray

        Park, Han Yong,Kim, Doo Hwan,Saini, Ramesh Kumar,Gopal, Judy,Keum, Young-Soo,Sivanesan, Iyyakkannu MDPI AG 2019 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.20 No.9

        <P>The goal of this study was to establish an efficient protocol for the large-scale propagation of Mertensia maritima (L.) Gray, and evaluate the carotenoid, fatty acid, and tocopherol contents in the leaves of in vitro regenerated shoots. Surface-disinfected node and shoot tip explants were placed on semisolid Murashige and Skoog (MS) medium with 0-16 µM N6-benzyladenine (BA), kinetin, (KN), and thidiazuron (TDZ) alone, or in combination with, 1 or 2 µM α-naphthaleneacetic acid (NAA). Of the three different cytokinins employed, TDZ elicited the best results for axillary shoot proliferation. A maximum frequency of shoot initiation above 84%, with a mean of 8.9 and 4.8 shoots per node and shoot tip, respectively, was achieved on the culture medium supplemented with 4 µM TDZ. A combination of TDZ + NAA significantly increased the percentage of multiple shoot formation and number of shoots per explant. The best shoot induction response occurred on MS medium with 4 µM TDZ and 1 µM NAA. On this medium, the node (93.8%) and shoot tip (95.9%) explants produced an average of 17.7 and 8.6 shoots, respectively. The highest root induction frequency (97.4%) and number of roots per shoot (25.4), as well as the greatest root length (4.2 cm), were obtained on half-strength MS medium supplemented with 4 µM indole-3-butyric acid (IBA). The presence of six carotenoids and α-tocopherol in the leaf tissues of M. maritima was confirmed by HPLC. Gas chromatography-mass spectrometry analysis confirmed the presence of 10 fatty acids, including γ-linolenic acid and stearidonic acid in the leaf tissues of M. maritima. All-E-lutein (18.49 μg g−1 fresh weight, FW), α-tocopherol (3.82 μg g−1 FW) and α-linolenic acid (30.37%) were found to be the significant compounds in M. maritima. For the first time, a successful protocol has been established for the mass propagation of M. maritima with promising prospects for harnessing its bioactive reserves.</P>

      • KCI등재후보
      • KCI등재후보

        Early and Uniform Maturation in Silkworm Bombyx mori L. by Phytoecdysteroid Extracted from a Plant of Family Caryophyllaceae

        Trivedy, Kanika,Nair, K.Sashindran,Ramesh, M.,Gopal, Nisha,Kumar, S.Nirmal Korean Society of Sericultural Science 2003 International Journal of Industrial Entomology Vol.7 No.1

        One of the biggest problems encountered during the last phase of silkworm rearing is non-uniform maturation of the silkworms especially during cooler months. Phytoecdysteroid (20-hydroxy ecdysone) was extracted in large-scale from a plant belongs to Caryophyllaceae and fed to silkworm larvae to test the effect of phytoecdysteroid. About 80% of the silkworms were ready for mounting by 18 hrs after treatment (when the treatment is done for uniform spinning), whereas in control batch only 37% worms were ready for mounting by the same time.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼