RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Kinematic analysis and fault-dependence of building-wall fracture patterns during moderate earthquakes

        김영석,Sambit Prasanajit Naik,최진혁,진광민,Gong-Ruei Ho,김태형,이진현 한국지질과학협의회 2023 Geosciences Journal Vol.27 No.6

        Two recent moderate earthquakes in South Korea, the 2016 MW 5.5 Gyeongju earthquake and 2017 MW 5.4 Pohang earthquake, caused damages to modern residential buildings. These events occurred with almost the same magnitude and duration in the same seismotectonic environment but exhibited remarkably different focal depths, faulting types, surface deformation, and especially structural damage features, but the reasons for these contrasts remain unknown. Furthermore, the building damage patterns are different from the natural damages, which have typical patterns depending on the fault types. It is important to understand the key reasons of these different phenomena to prevent destructive hazards from future earthquakes, particularly in densely populated intraplate regions. Here, we reveal the relationships between the geological-seismic parameters and earthquake damage features based on the patterns of building damage associated with these two events. During post-event urgent field surveys, we systematically observed en-echelon (or Riedel-type) sub-horizontal fractures in building walls associated with strike-slip motion and high-angle conjugate X-shaped fractures in building walls associated with predominantly reverse oblique-slip motion. We attribute the different patterns of earthquake damage to variations in faulting types and associated ground motions; strike-slip faulting resulting in horizontal shear and oblique-slip faulting yielding vertical ground motion. We argue that these interesting characteristics of building damage are mainly caused by stress conditions depending on the environmental change from the underground crust to the ground surface of free face. Our study highlights the importance of post-event investigations of earthquake damage to improve the level of seismic hazard assessment. Our findings from this study could serve as a reference for establishing proper anti-earthquake design and reinforcement for seismic protection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼