RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space

        Ebrahim Sotoudehnia,Farzad Shahabian,Ahmad Aftabi Sani 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.23 No.1

        This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.

      • Multipoint variable generalized displacement methods: Novel nonlinear solution schemes in structural mechanics

        Ali Maghami,Farzad Shahabian,Seyed Mahmoud Hosseini 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.83 No.2

        The generalized displacement method is a nonlinear solution scheme that follows the equilibrium path of the structure based on the development of the generalized displacement. This method traces the path uniformly with a constant amount of generalized displacement. In this article, we first develop higher-order generalized displacement methods based on multi-point techniques. According to the concept of generalized stiffness, a relation is proposed to adjust the generalized displacement during the path-following. This formulation provides the possibility to change the amount of generalized displacement along the path due to changes in generalized stiffness. We, then, introduce higher-order algorithms of variable generalized displacement method using multi-point methods. Finally, we demonstrate with numerical examples that the presented algorithms, including multi-point generalized displacement methods and multi-point variable generalized displacement methods, are capable of following the equilibrium path. A comparison with the arc length method, generalized displacement method, and multi-point arc-length methods illustrates that the adjustment of generalized displacement significantly reduces the number of steps during the path-following. We also demonstrate that the application of multi-point methods reduces the number of iterations.

      • KCI등재

        Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

        Mohammad Hossein Ghadiri Rad,Farzad Shahabian,Seyed Mahmoud Hosseini 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.35 No.1

        The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

      • SCIESCOPUS

        Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

        Hosseini, Seyed Mahmoud,Shahabian, Farzad Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.1

        The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

      • KCI등재

        Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

        Seyed Mahmoud Hosseini,Farzad Shahabian 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.1

        The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

      • KCI등재

        Stochastic hybrid numerical method for transient analysis of stress field in functionally graded thick hollow cylinders subjected to shock loading

        Seyed Mahmoud Hosseini,Farzad Shahabian 대한기계학회 2013 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.27 No.5

        This investigation aims to study the random stresses in a functionally graded (FG) thick hollow cylinder with uncertain material properties subjected to mechanical shock loading using a hybrid numerical method. The mechanical properties are considered to vary across thickness of FG cylinder as a nonlinear power function of radius. The stresses are obtained by solving Navier equation and using Galerkin finite element and Newmark finite difference methods. The Monte Carlo simulation is used to generate the random mechanical properties for the problem. The failure probabilities and time history analysis of stresses are determined for various coefficient of variation considering various grading patterns of mechanical properties. The presented hybrid numerical method is effective, with high capability for stochastic analysis of dynamic and transient analysis of FG structures with various boundary conditions.

      • KCI등재

        Buckling analysis of semi-rigid gabled frames

        Mohammad Rezaiee-Pajand,Farzad Shahabian,Mohsen Bambaeechee 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.55 No.3

        It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

      • KCI등재

        Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method

        Mohammad Hossein Ghadiri Rad,Farzad Shahabian,Seyed Mahmoud Hosseini 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.32 No.3

        In the present paper, the element free Galerkin (EFG) method is developed for geometrically nonlinear analysis of deep beams considering small scale effect. To interpret the behavior of structure at the nano scale, the higher-order gradient elasticity nonlocal theory is taken into account. The radial point interpolation method with high order of continuity is used to construct the shape functions. The nonlinear equation of motion is derived using the principle of the minimization of total potential energy based on total Lagrangian approach. The Newmark method with the small time steps is used to solve the time dependent equations. At each time step, the iterative Newton-Raphson technique is applied to minimize the residential forces caused by the nonlinearity of the equations. The effects of nonlocal parameter and aspect ratio on stiffness and dynamic parameters are discussed by numerical examples. This paper furnishes a ground to develop the EFG method for large deformation analysis of structures considering small scale effects.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼