RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

        Naqvi, Ahmad Abu Turab,Anjum, Farah,Khan, Faez Iqbal,Islam, Asimul,Ahmad, Faizan,Hassan, Md. Imtaiyaz Korea Genome Organization 2016 Genomics & informatics Vol.14 No.3

        Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

      • KCI등재

        Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

        Ahmad Abu Turab Naqvi,Farah Anjum,Faez Iqbal Khan,Asimul Islam,Faizan Ahmad,Md. Imtaiyaz Hassan 한국유전체학회 2016 Genomics & informatics Vol.14 No.3

        Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

      • KCI등재

        Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease

        Shafie Alaa,Ashour Amal Adnan,Anwar Saleha,Anjum Farah,Hassan Md. Imtaiyaz 대한약학회 2024 Archives of Pharmacal Research Vol.47 No.6

        Huntington’s disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.

      • KCI등재

        Cancerous Inhibitor of Protein Phosphatase 2A as a Molecular Marker for Aggressiveness and Survival in Oral Squamous Cell Carcinoma

        Rajab Alzahrani,Amani A. Alrehaili,Amal F. Gharib,Farah Anjum,Khadiga A. Ismail,Wael H. Elsawy 대한암예방학회 2020 Journal of cancer prevention Vol.25 No.1

        Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been identified as one of the most commonly altered proteins in human cancers. It blocks the tumor-suppressive action of protein phosphatase 2A (PP2A) complex and enhances malignancy. Thirty-five patients with squamous cell carcinoma of the oral cavity underwent surgical resection of the tumor. CIP2A was assessed by quantitative real-time PCR in the resected tumor tissues and in their adjacent normal tissues. CIP2A was found to be overexpressed in all oral squamous cell carcinoma (OSCC) specimens in comparison to their surrounding normal tissue. CIP2A overexpression was statistically correlated with poor prognostic feature of the tumor. Thus, a high expression level of CIP2A was associated with shorter survival. In conclusion, CIP2A is upregulated in OSCC, and its overexpression is correlated with aggressiveness of the tumor and poor outcome and survival. It may serve as a prognostic marker of OSCC. Key Words Cancerous inhibitor of protein phosphatase 2A, Oral squamous cell carcinoma

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼