RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application

        D.S. Dhawale,R.R. Salunkhe,V.S. Jamadade,D.P. Dubal,S.M. Pawar,C.D. Lokhande 한국물리학회 2010 Current Applied Physics Vol.10 No.3

        An electrosynthesis process of hydrophilic polyaniline nanofiber electrode for electrochemical supercapacitor is described. The TGA–DTA study showed polyaniline thermally stable up to 323 K. Polyaniline nanofibers exhibit amorphous nature as confirmed from XRD study. Smooth interconnected fibers having diameter between 120–125 nm and length typically ranges between 400–500 nm observed from SEM and TEM analysis. Contact angle measurement indicated hydrophilic nature of polyaniline fibers. Optical study revealed the presence of direct band gap with energy 2.52 eV. The Hall effect measurement showed room temperature resistivity ~3 × 10-4 Ω cm and Hall mobility 549.35 cm-2V-1 s-1. The supercapacitive performance of nanofibrous polyaniline film tested in 1 M H2SO4 electrolyte and showed highest specific capacitance of 861 F g-1 at the voltage scan rate of 10 mV/s.

      • Binder-free novel Cu<sub>4</sub>SnS<sub>4</sub> electrode for high-performance supercapacitors

        Lokhande, A.C.,Patil, Amar,Shelke, A.,Babar, P.T.,Gang, M.G.,Lokhande, V.C.,Dhawale, Dattatray S.,Lokhande, C.D.,Kim, Jin Hyeok Elsevier 2018 ELECTROCHIMICA ACTA Vol.284 No.-

        <P><B>Abstract</B></P> <P>In this work, for the first time, we report the direct coating of ternary chalcogenide-based nanostructured Cu<SUB>4</SUB>SnS<SUB>4</SUB> (CTS) thin film electrodes for the energy storage application. The phase purity, composition, microstructure, optical and electrical properties of the synthesized electrode are validated through comprehensive characterization techniques. In the supercapacitive application, the CTS electrode delivers an excellent performance with the maximum specific capacitance of 704 F/g, an energy density of 27.77 Wh/kg and a power density of 7.14 kW/kg in 1 M NaOH electrolyte solution. The intrinsic electrode properties such as the electronic conductivity, crystal structure and film hydrophilicity are found to be influential parameters for the obtained high performance and are studied in detail. Furthermore, the solid-state supercapacitive device fabricated using CTS electrodes and polymer gel electrolyte (PVA/NaOH) in a symmetric configuration, demonstrated the highest specific capacitance of 34.9 F/g with an energy density of 2.4 Wh/kg, a power density of 0.291 kW/kg and more than 89.9% capacitive retention. The presented work reports a simple, cost-effective, scalable and replicable approach for electrode application in supercapacitor industry.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Specific capacitance of 704 F/g, an energy density of 27.77 Wh/kg and a power density of 7.14 kW/kg. </LI> <LI> The intrinsic electrode properties, such as the electronic conductivity, crystal structure and hydrophilicity are found to be influential parameters. </LI> <LI> Symmetric device: specific capacitance of 34.9 F/g, an energy density of 2.4 Wh/kg, a power density of 0.291 kW/kg with 89.9% capacitive retention for 1000 cycles. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>The obtained porous microstructure of the CTS thin film electrode using SILAR method and its electrochemical characterization in solid-state symmetric configuration. The CV and GCD curves are accomplished in the potential window range of 0–1.2 V. The device exhibited 89.9% stability retention after 1000 CV cycles.</P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼