RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Facile preparation of antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic polyvinylidene fluoride membranes for effective removal of rhodamine B

        Yanhua Cui,Lili Yang,Minjia Meng,Qi Zhang,Binrong Li,Yilin Wu,Yunlei Zhang,Jihui Lang,Chunxiang Li 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.2

        A simplified strategy for facilely fabricating antifouling graphite carbon nitride/silver phosphate (g-C3N4/ Ag3PO4) nanocomposite photocatalytic polyvinylidene fluoride (PVDF) porous membranes was developed for effective removal of rhodamine B (RhB). g-C3N4/Ag3PO4 heterojunction was strongly fixed to the interior of the PVDF membranes via phase inversion method. The membrane structure was analyzed by Fourier transform spectrophotometer (FT-IR). The morphology of the prepared membranes was investigated using scanning electron microscopy (SEM), EDX-mapping and atomic force microscopy (AFM), respectively. All prepared nanocomposite photocatalytic PVDF membranes exhibited a typically porous structure, and g-C3N4/Ag3PO4 nanocomposites were well dispersed inside the membranes. The obtained g-C3N4/Ag3PO4 heterojunction nanoparticle decorated PVDF membrane had a lower water contact angle of 79o and higher porosity of 85% than that of other two control membranes. The nanocomposite photocatalytic PVDF porous membranes had extremely high permeation flux over 1,083 L·m−2·h−1, and could be used for the removal of RhB. The removal efficiency of g-C3N4/Ag3PO4-PVDF membranes towards RhB solution under visible light irradiation reached 97%, higher than that of the pure PVDF membranes (41%) and g-C3N4-PVDF membranes (85%). Remarkably, the flux performance and flux recovery ratio (FRR) of membranes revealed that the g-C3N4/Ag3PO4- PVDF membranes could recover high flux after fouling, which presented better fouling resistance. Furthermore, the fabricated antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic PVDF porous membranes exhibited excellent recyclability. Therefore, it is expected that g-C3N4/Ag3PO4-PVDF membranes could provide an energy-saving strategy for effective removal of organic dyes wastewater and have a great potential for practical wastewater treatment in the future.

      • KCI등재

        Nature-mimicking fabrication of antifouling photocatalytic membrane based on Ti/BiOI and polydopamine for synergistically enhanced photocatalytic degradation of tetracycline

        Yanhua Cui,Lili Yang,Yan Yan,Zengkai Wang,Jian Zheng,Binrong Li,Yonghai Feng,Chunxiang Li,Minjia Meng 한국화학공학회 2021 Korean Journal of Chemical Engineering Vol.38 No.2

        The photocatalytic efficiency of conventional blending photocatalytic membranes suffers a significant reduction due to effective photocatalyst embedded in membrane matrix. Therefore, in this study, inspired by the bioadhesive technology of polydopamine (pDA), a novel Ti doped bismuth oxyiodide (BiOI)-polydopamine (pDA)-coated cellulose acetate (CA) (Ti/BiOI-pDA/CA) photocatalytic nanocomposite membranes were successfully developed for effective removal of tetracycline (TC). The Ti/BiOI-pDA/CA nanocomposite membranes displayed very high photocatalytic activity toward TC (about 98% after 120 min) under visible light irradiation and superior photodegradation kinetics (k=0.03214 min1). The removal rate of Ti/BiOI/-pDA/CA nanocomposite membranes under dynamic cyclic degradation system could be further improved, giving TC removal efficiency of 91% in 60min. Remarkably, the permeate flux, flux recovery ratio (FRR), reversible fouling (Rr), irreversible fouling (Rir) and the total fouling ratio (Rt) revealed the Ti/BiOI-pDA/CA nanocomposite membranes had excellent antifouling performance. In addition, the Ti/ BiOI-pDA/CA nanocomposite membranes exhibited excellent stability and reusability. Therefore, this work gives insight into the effective removal of TC wastewater and has a great potential for new generation of high-performance photocatalytic membranes for practical wastewater treatment in the future.

      • KCI등재

        Fabrication of the Ti5Si3/Ti Composite Inoculants and Its Refining Mechanism on Pure Titanium

        Nuo Li,Chunxiang Cui,Shaungjin Liu,Long Zhao,Shuiqing Liu 대한금속·재료학회 2017 METALS AND MATERIALS International Vol.23 No.2

        The in situ Ti5Si3/Ti inoculants were successfully prepared by vacuum arc-melting and melt-spinning method. An efficient route by adding a small quantity of Ti5Si3/Ti inoculants to Ti melt has been first proposed tomodify the coarse grains of as cast microstructure of pure titanium in this paper. It was found that themicrostructure of ribbon inoculants was cellular structure that composed of Ti5Si3 and α-Ti phases. Thegrain refining effect of the inoculants was significantly improved with the adding ratio range from 0.2% to0.5% in weight. With the increase of addition amount of inoculants on Ti melt, the tensile strength, yieldstrength and microhardness of pure titanium are significantly improved except elongation. The excellentgrain refining effect can be attributed to the heterogeneous nucleation of the titanium grain on the precipitatedTi5Si3 phases in the Si-rich regions and the constitutional supercooling of Si in the Si-poverty regions. It issuggested that the in situ Ti5Si3/Ti inoculants is a promising inoculants for titanium alloys.

      • KCI등재

        Effects of In-Situ BaB6/Al Composite Inoculant on the Mechanical and Corrosion Behavior of Al–7Si–0.3Mg Alloy

        Yingguang Liang,Chunxiang Cui,Hongtao Geng,Lu Liu,Sen Cui,Shichao Yang 대한금속·재료학회 2023 METALS AND MATERIALS International Vol.29 No.4

        In this work, as an inoculant, in-situ BaB6/Al composites was fabricated and used to refine the α-Al dendrites and modify theeutectic Si of A356.2(Al–7Si–0.3Mg) alloy. BaB6/Al ingot and ribbon composites mainly contain two phases, α-Al and BaB6. In BaB6/Al ribbons, nano-size BaB6ceramic particles exist and disperse uniformly which help to better exert the inoculanteffect in A356.2 alloy. YS, UTS, EL and HV of B2 alloy are 36.3%, 18.3%, 46.4% and 20.8% higher than the base alloy (B0),respectively. The ductile fracture characteristics are more obvious. Moreover, B2 alloy shows the best corrosion resistance. Aland BaB6form a clear, stable and well matched interface, so BaB6particles can act as the heterogeneous nucleation of α-Aland refine the A356.2 alloy. Furthermore, the combined of free micro-alloying elements Ba and B in BaB6/Al compositespromote the twins formation, which change the eutectic Si to fine fibrous and granular shape.

      • KCI등재

        Dual-channel separation system based on platanus fruit-like Ni@Ni(OH)2 hierarchical architecture for fast, efficient and continuous light/heavy oil–water separation

        Atian Xie,Jiuyun Cui,Yangyang Chen,Jihui Lang,Chunxiang Li,Yongsheng Yan,Jiangdong Dai 한국공업화학회 2019 Journal of Industrial and Engineering Chemistry Vol.74 No.-

        Realization of fast, efficient and continuous oil–water separation is of great significance for solving theproblem of oil pollution. We present here a facile hydrothermal strategy to synthesize a superhydrophilicplatanus fruit-like Ni@Ni(OH)2 hierarchical architecture (SI-PFHA). Additionally, superhydrophobicplatanus fruit-like Ni@Ni(OH)2 hierarchical architecture (SO-PFHA) is obtained through stearic acidmodification of SI-PFHA. Dual-channel separation system is integrated based on two superwettingmembranes. Such separation system is competent for continuous light/heavy oil–water separation withhighflux and high separation efficiency. Importantly, outstanding durability and reusability make thisseparation system a promising strategy for practical application in remediation of oily wastewater.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼