RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Numerical and experimental studies of a building with roller seismic isolation bearings

        Ortiz, Nelson A.,Magluta, Carlos,Roitman, Ney Techno-Press 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.54 No.3

        This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. The results are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model. Finally, the performance of the constructed seismic protection system is assessed through a parametric study.

      • KCI등재

        Numerical and experimental studies of a building with roller seismic isolation bearings

        Nelson A. Ortiz,Carlos Magluta,Ney Roitman 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.54 No.3

        This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. Theresults are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model . Finally, the performance of the constructed seismic protection system is assessed through a parametric study.

      • KCI등재

        Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight

        Paulo B. Gonçalves,Daniel Leonardo B.R. Jurjo,Carlos Magluta,Ney Roitman 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.46 No.6

        This work presents an experimental methodology specially developed for the nonlinear largeamplitude free vibration analysis of a clamped-free thin-walled metal column under self-weight. The main contribution of this paper is related to the developed experimental methodology which is based on a remote sensing technique using a computer vision system that integrates, on-line, the digital image acquisition and its treatment through special image processing routines. The main importance of this methodology is that it performs large deflections measurements without making contact with the structure and thus, not introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness properties. This structure presents, in most cases, highly non-linear responses, which cannot be reproduced by conventional finite-element softwares due, mainly, to the simultaneous influence of geometric and inertial non-linearities. To capture the non-linearities associated with large amplitude vibration and be able to describe the buckling process, the structure is discretized as a sequence of jointed coupled elastic pendulums. The obtained numerical results are favorably compared with the experimental ones, in the preand post-buckling regimes.

      • SCIESCOPUS

        Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight

        Goncalves, Paulo B.,Jurjo, Daniel Leonardo B.R.,Magluta, Carlos,Roitman, Ney Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.46 No.6

        This work presents an experimental methodology specially developed for the nonlinear large-amplitude free vibration analysis of a clamped-free thin-walled metal column under self-weight. The main contribution of this paper is related to the developed experimental methodology which is based on a remote sensing technique using a computer vision system that integrates, on-line, the digital image acquisition and its treatment through special image processing routines. The main importance of this methodology is that it performs large deflections measurements without making contact with the structure and thus, not introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness properties. This structure presents, in most cases, highly non-linear responses, which cannot be reproduced by conventional finite-element softwares due, mainly, to the simultaneous influence of geometric and inertial non-linearities. To capture the non-linearities associated with large amplitude vibration and be able to describe the buckling process, the structure is discretized as a sequence of jointed coupled elastic pendulums. The obtained numerical results are favorably compared with the experimental ones, in the pre- and post-buckling regimes.

      • SCIESCOPUS

        Large deflection behavior and stability of slender bars under self weight

        Goncalves, Paulo B.,Jurjo, Daniel Leonardo B.R.,Magluta, Carlos,Roitman, Ney,Pamplona, Djenane Techno-Press 2006 Structural Engineering and Mechanics, An Int'l Jou Vol.24 No.6

        In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼