RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Water Uptake and Tensile Properties of Plasma Treated Abaca Fiber Reinforced Epoxy Composite

        ( Marissa A Paglicawan ),( Blessie A Basilia ),( Byung Sun Kim ) 한국복합재료학회 2013 Composites research Vol.26 No.3

        This work presents the tensile properties and water uptake behavior of plasma treated abaca fibers reinforced epoxy composites. The composites were prepared by vacuum assisted resin transfer molding. The effects of treatment on tensile properties and sorption characteristics of abaca fiber composites in distilled water and salt solution at room temperature were investigated. The tensile strength of the composites increased with plasma treatment. With plasma treatment, an improvement of 92.9% was obtained in 2.5 min exposure time in plasma. This is attributed to high fiber-matrix compatibility. Less improvement on tensile properties of hybrid treatment of sodium hydroxide and plasma was obtained. However, both treatments reduced overall water uptake in distilled water and salt solution. Hydrophilicity of the fibers decreased upon plasma and sodium hydroxide treatment, which decreases water uptake.

      • Plasma-treated Abaca Fabric/Unsaturated Polyester Composite Fabricated by Vacuum-assisted Resin Transfer Molding

        Marissa A. Paglicawan,김병선,Blessie A. Basilia,Carlo S. Emolaga,Delmar D. Marasigan,Paul Eric C. Maglalang 한국정밀공학회 2014 International Journal of Precision Engineering and Vol.1 No.3

        To improve the adhesion and wetting between the abaca fibers and matrix, the surface of abaca fabric was modified using plasma polymerization. Different plasma exposure times were conducted to determine the effect of plasma treatment on the properties of the composites. A combination of plasma and other surface modification processes was also investigated to determine whether double treatments could further enhance the properties of these composites. Combined treatments involve plasma polymerization of the fabric after pretreatment with one of the following surface-modification reagents: a) γ -methacrylopropyltrimethylsilane, b) triethoxyvinylsilane, and c) 2%w/w NaOH (aq).The abaca fabric/unsaturated polyester composites were fabricated using the vacuum-assisted resin transfer molding (VARTM) technique.SEM results showed that 10 to 20 seconds plasma treatment gave the right amount of surface roughness for maximum fiber and matrix adhesion leading to improved mechanical properties of the composites. Longer plasma treatment time and double treatment however resulted in composites with lower mechanical properties. Although the composite with alkali and plasma-treated fabric showed the lowest mechanical properties it exhibited the lowest water uptake in both distilled water and brine solution.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼