RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Catheter-Directed Thrombolysis with a Continuous Infusion of Low-Dose Urokinase for Non-Acute Deep Venous Thrombosis of the Lower Extremity

        Binbin Gao,Jingyong Zhang,Xuejun Wu,Zonglin Han,Hua Zhou,Dianning Dong,Xing Jin 대한영상의학회 2011 Korean Journal of Radiology Vol.12 No.1

        Objective: We wanted to evaluate the feasibility of catheter-directed thrombolysis with a continuous infusion of low-dose urokinase for treating non-acute (less than 14 days) deep venous thrombosis of the lower extremity. Materials and Methods: The clinical data of 110 patients who were treated by catheter-directed thrombolysis with a continuous infusion of low-dose urokinase for lower extremity deep venous thrombosis was analysed. Adjunctive angioplasty or/and stenting was performed for the residual stenosis. Venous recanalization was graded by pre- and posttreatment venography. Follow-up was performed by clinical evaluation and Doppler ultrasound. Results: A total of 112 limbs with deep venous thrombosis with a mean symptom duration of 22.7 days (range: 15-38 days) were treated with a urokinase infusion (mean: 3.5 million IU) for a mean of 196 hours. After thrombolysis, stent placement was performed in 25 iliac vein lesions and percutaneous angioplasty (PTA) alone was done in fi ve iliac veins. Clinically signifi cant recanalization was achieved in 81% (90 of 112) of the treated limbs; complete recanalization was achieved in 28% (31 of 112) and partial recanalization was achieved in 53% (59 of 112). Minor bleeding occurred in 14 (13%) patients, but none of the patients suffered from major bleeding or symptomatic pulmonary embolism. During followup (mean: 15.2 months, range: 3-24 months), the veins were patent in 74 (67%) limbs. Thirty seven limbs (32%) showed progression of the stenosis with luminal narrowing more than 50%, including three with rethrombosis, while one revealed an asymptomatic iliac vein occlusion; 25 limbs (22%) developed mild post-thrombotic syndrome, and none had severe post-thrombotic syndrome. Valvular refl ux occurred in 24 (21%) limbs. Conclusion: Catheter-directed thrombolysis with a continuous infusion of low-dose urokinase combined with adjunctive iliac vein stenting is safe and effective for removal of the clot burden and for restoration of the venous fl ow in patients with non-acute lower extremity deep venous thrombosis. Objective: We wanted to evaluate the feasibility of catheter-directed thrombolysis with a continuous infusion of low-dose urokinase for treating non-acute (less than 14 days) deep venous thrombosis of the lower extremity. Materials and Methods: The clinical data of 110 patients who were treated by catheter-directed thrombolysis with a continuous infusion of low-dose urokinase for lower extremity deep venous thrombosis was analysed. Adjunctive angioplasty or/and stenting was performed for the residual stenosis. Venous recanalization was graded by pre- and posttreatment venography. Follow-up was performed by clinical evaluation and Doppler ultrasound. Results: A total of 112 limbs with deep venous thrombosis with a mean symptom duration of 22.7 days (range: 15-38 days) were treated with a urokinase infusion (mean: 3.5 million IU) for a mean of 196 hours. After thrombolysis, stent placement was performed in 25 iliac vein lesions and percutaneous angioplasty (PTA) alone was done in fi ve iliac veins. Clinically signifi cant recanalization was achieved in 81% (90 of 112) of the treated limbs; complete recanalization was achieved in 28% (31 of 112) and partial recanalization was achieved in 53% (59 of 112). Minor bleeding occurred in 14 (13%) patients, but none of the patients suffered from major bleeding or symptomatic pulmonary embolism. During followup (mean: 15.2 months, range: 3-24 months), the veins were patent in 74 (67%) limbs. Thirty seven limbs (32%) showed progression of the stenosis with luminal narrowing more than 50%, including three with rethrombosis, while one revealed an asymptomatic iliac vein occlusion; 25 limbs (22%) developed mild post-thrombotic syndrome, and none had severe post-thrombotic syndrome. Valvular refl ux occurred in 24 (21%) limbs. Conclusion: Catheter-directed thrombolysis with a continuous infusion of low-dose urokinase combined with adjunctive iliac vein stenting is safe and effective for removal of the clot burden and for restoration of the venous fl ow in patients with non-acute lower extremity deep venous thrombosis.

      • KCI등재

        Analysis of flow transition and separation on oscillating airfoil by pressure signature

        Binbin Wei,Yongwei Gao,Long Wang,Dong Li 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.1

        To have a better understanding of the unsteady aerodynamic characteristics of the airfoil which play important roles in wind turbine blade design, we investigated the boundary layer transition and separation on oscillating airfoil S809 using pressure signature captured in wind tunnel testing. The developed data processing technique of "sliding window" was applied to get useful transition and separation information. Meanwhile, the hysteresis effects of oscillation frequency on transition and separation were studied. It is found that (1) the root mean square (RMS) of pressure signature can indicate the transition and separation with the dimensionless window width of `m = 0.0015; (2) the transitional attack of angle in up stroke is larger than that in down stroke at the state of the relative chord length of x/c ≥ 0.14, while the situation is opposite at the state of the relative chord length of x/c ≤ 0.14; (3) the flow separation is advanced and the reattachment is delayed with the increase of the oscillation frequency, which results in a greater hysteresis effect. The sliding window technique, whose parameters were determined in this paper, is effective for detecting boundary layer transition and separation from pressure signature.

      • KCI등재

        SYSTEM POWER LOSS OPTIMIZATION OF ELECTRIC VEHICLE DRIVEN BY FRONT AND REAR INDUCTION MOTORS

        Binbin Sun,Song Gao,Chao Ma,Junwei Li 한국자동차공학회 2018 International journal of automotive technology Vol.19 No.1

        Power loss optimization aiming at the high-efficiency drive of front-and-rear-induction-motor-drive electric vehicle (FRIMDEV) as an effective way to improve energy efficiency and extend driving range is of high importance. Different from the traditional look-up table method of motor efficiency, power loss optimization of the dual- motor system based on the loss mechanism of induction motor (IM) is proposed. First of all, based on the power loss characteristic of FRIMDEV from battery to wheels, the torque distribution optimization model aiming at the minimum system power loss is put forward. Secondly, referring to d-q axis equivalent model of IM, the power loss functions of the dual-IM system are modeled. Then, the optimal torque distribution coefficient (βo) between the two IMs is derived, and the theoretical switching condition (Tsw) between the single- and dual-motor-drive mode (SMDM and DMDM) is confirmed. Finally, a dual-motor test platform is developed. The derived torque distribution strategy is verified. The influence of motor temperature on βo and Tsw are tested, and the correction models based on temperature difference are proposed. Based on the system power loss analysis, it can be confirmed that, under low load conditions, the SMDM takes priority over the DMDM, and the controller of the idling motor should be shut down to avoid the additional excitation loss. While under middle to high load conditions, even torque distribution (βo = 0.5) is preferred if the temperature difference between the two IMs is small; otherwise, βo should be corrected based on dual-motor temperatures. The theoretical Tsw derived without dealing with temperature difference is a function only of motor speed, while temperature difference correction of it should be conducted in actual operations based on motor resistance changing with temperature.

      • KCI등재

        Physics of Dynamic Stall Vortex During Pitching Oscillation of Dynamic Airfoil

        Binbin Wei,Yongwei Gao,Dong Li 한국항공우주학회 2021 International Journal of Aeronautical and Space Sc Vol.22 No.6

        Dynamic stall, which has a significant effect on the aerodynamic performances of dynamic airfoils, is closely related to the physics of the dynamic stall vortex (DSV). The physics of the DSV on the NACA 0012 airfoil was experimentally studied using unsteady pressure measurements with high time accuracy. The experimental Reynolds number was Re = 1.5 × 106, and the reduced frequency was k = 0.069. The propagation of the unsteady pressure field during the dynamic stall process was analyzed in detail. The motion characteristics of the DSV were examined, including its near-wall development characteristics and near-wall evolution velocity. Moreover, the frequency characteristics of the near-wall DSV were studied using wavelet analysis combined with proper orthogonal decomposition (POD) technology. In addition, the effects of the mean angle of attack (AoA) and the amplitude on the DSV motion and frequency characteristics were examined in detail. The effects of the mean AoA on the near-wall DSV strength and the propagation velocity were linear, while the effects of amplitude were nonlinear. The mean AoA and amplitude had a significant influence on the frequency of the leading-edge vortex (LEV) at the initial stage of the DSV development (x/c = 0.10–0.20). This work allows the DSV physics to be understood more deeply.

      • KCI등재

        Experimental Investigation of Flow Separation Control over Airfoil by Upper Surface Flap with a Gap

        Lishu Hao,Yongwei Gao,Binbin Wei 한국항공우주학회 2022 International Journal of Aeronautical and Space Sc Vol.23 No.5

        This paper focused on the effects of the flap with a tiny gap on the flow separation over the NPU-WA-180 airfoil. The effects of the geometric parameters of the flaps, such as the flap gap height, angle, and position, were investigated. The study showed that the flap can significantly improve the stall features of airfoil in a limited phase of angle of attack (AoA), and increase lift and reduce drag at a high AoA. It can increase the lift coefficient and drag coefficient in the case of high AoAs, and the angle range of the lift augmentation and drag reduction can reach more than 9°. Furthermore, an excessively large gap is not conducive to the improvement of the airfoil stall performance. The flap angle plays a key role in the airfoil stall characteristic. As the flap angle decreases, the angle range of improving airfoil stall characteristics becomes larger, the pitching moment increment becomes smaller. However, the maximum lift increment and the effect of the drag reduction will decrease. And the effects of the position of the flap on the airfoil performance were also studied. Considering the maximum lift coefficient and drag coefficients in large AoA, the Type1 installed at the 0.7c position has the best effect; from the perspective of delayed stall, the Type1 installed at the 0.6c position has the best delay effect. These results can provide the data and theoretical support for the flap application in engineering.

      • SCIEKCI등재

        Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

        Xin Zhong,Yang Yang,Jing Zhao,Binbin Gong,Jingrui Li,Xiaolei Wu,Hongbo Gao,Guiyun Lü 한국식물병리학회 2022 Plant Pathology Journal Vol.38 No.3

        Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/μl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plantpathogen interactions, and effective management.

      • KCI등재

        Treatment of wastewater containing linear alkylbenzene sulfonate by bacterial-microalgal biological turntable

        Renjie Tu,Wenbiao Jin,Song-fang Han,Binbin Ding,Shu-hong Gao,Xu Zhou,Shao-feng Li,Xiaochi Feng,Qing Wang,Qinhui Yang,Yu Yuwen 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.5

        Linear alkylbenzene sulfonate (LAS), which is widely used as detergent, is a common toxic pollutant in wastewater. Generally, biodegradation process is applied to remove LAS. However, the efficiency of traditional wastewater treatment cannot meet the growing demand. In this study, an improved biological turntable with a symbiotic system of bacteria and microalgae was primarily used to enhance the biodegradation efficiency of LAS from wastewater. The symbiotic system of bacteria and microalgae was mainly composed of Scenedesmus dimorphus and three LAS-degrading bacteria Plesiomonas sp. (L3, L7) and Pseudomonas sp. (H6). The average removal rate of LAS was up to 94.6%. The LAS concentration of the effluent of the system decreased by 81.7% after the bacterial-microalgae inoculation (the inoculation temperature was 25 oC; microalgae were inoculated at a concentration of 10% only at the start of the system; bacteria were continuously inoculated at 1‰ concentration). After bacterial-microalgae inoculation, the average effluent concentration of CODCr in the tertiary reaction tank was 24.3mg/L, the average membrane effluent concentration was 15.8mg/L, and the average removal rate was 90.5%. Compared with the control group without inoculation, the concentration of CODCr in the tertiary reaction tank and membrane effluent decreased by 55.7% and 46.4%. The denaturing gradient electrophoresis (DGGE) pattern analysis of the systemic flora showed that there were two dominant species of high LAS degrading bacteria. They were identified to belong to Plesiomonas sp. and Pseudomonas sp., respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼