http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Riaz Uddin,Ali S. Alghamdi,Muhammad Hammad Uddin,Ahmed Bilal Awan,Syed Atif Naseem 대한전기학회 2019 Journal of Electrical Engineering & Technology Vol.14 No.6
The fault diagnosis and control through fault detection, isolation and supply restoration (FDIR) technique is the part of a commonly used distribution management system application in smart grid. When the fault occurs, it becomes essential to detect and isolate the faulty section of the distribution network at once and then restore back to its running condition through tie switches. The communication between IEDs is done through diferent communication mediums such as Ethernet, wireless, power line communication etc. Therefore, formal analysis of the FDIR mechanism is required with communication network (ideally Ethernet), which helps us to predict the behavior of FDIR response upon the occurrence of fault in terms of various important probabilities, reliability study and efciency (showing the system will work properly). In this regard, for the above said analyses, this article discusses (a) the development of the Markovian model of FDIR for distribution network of smart grid considering Tianjin Electric Power Network as case study with intelligent electronic devices (IEDs) using ideal communication medium (Ethernet); (b) utilized probabilistic model checker (PRISM tool) to predict the probabilities; (c) perform the reliability analyses and (d) study the efciency of FDIR behavior for future grid using logical properties. The detailed analysis and prediction (done for the fault occurrence scenario) mainly focus in determining the (1) the probability of switching failures of FDIR in smart grid; (2) the probability of isolating the defective switch from the system within limited time and (3) the probability of restoring the system automatically within the minimum possible interval.
Performance evaluation of novel solarpowered domestic air cooler with Peltier modules
Zafar Abbas,A. N. Shah,M. Tahir Hassan,M. Sarfraz Ali,Qamar ud Din,Bilal Naseem,Ammar Asghar,Ali Haider 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.11
Shifting of air conditioning and ventilation plants from conventional to renewable energy systems is one of the effective ways to save energy and attain sustainability. In this experimental study, an effort has been made to design, fabricate, and evaluate the cooling performance of a solar-powered domestic air cooler with Peltier plates to meet the comfort criteria as per ASHRAE standards. It also investigates the effect of Peltier modules on the performance of conventional room air cooler. The experiments were conducted in a 12x12 room with one, two, three, and four Peltier modules operating at various ambient temperatures. The experiments were repeated three times at specified conditions. Peltier effect was used to decrease water temperature, and subsequently cooled water was used to decrease the temperature of the air after coming in contact with this water. The cooled air was then used to create a comfort zone. The results indicated a decrease in temperature of the experimental zone by 5 %, 13 %, 19 %, and 23 % using one, two, three, and four Peltier modules respectively. The increase in relative humidity was recorded as 5 % at 27 °C temperature of the experimental zone. The results of energy analysis showed a substantial amount of energy savings in this study and suggest that more than 200 MW energy can be saved by replacing conventional electric air coolers all over the country with proposed Peltier based domestic solar powered air cooler.