RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

        Biao Liu,Zhengzhong Wang,Bo Zhang,Ningjun Du,Mingxia Gao,Guoliang Bai 국제구조공학회 2023 Steel and Composite Structures, An International J Vol.46 No.2

        In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

      • Integration of Network Topological and Connectivity Properties for Neuroimaging Classification

        Jie, Biao,Zhang, Daoqiang,Gao, Wei,Wang, Qian,Wee, Chong-Yaw,Shen, Dinggang IEEE 2014 IEEE Transactions on Biomedical Engineering Vol.61 No.2

        <P>Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer's disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results.</P>

      • Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

        Xiao-Long Gao,Jun-Yan Wang,Chen Bian,Ru-Cheng Xiao,Biao Ma 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.42 No.6

        Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

      • KCI등재후보

        Neuronal Functions of ESCRTs

        이진아,Fen-Biao Gao 한국뇌신경과학회 2012 Experimental Neurobiology Vol.21 No.1

        The endosomal sorting complexes required for transport (ESCRTs) regulate protein trafficking from endosomes to lysosomes. Recent studies have shown that ESCRTs are involved in various cellular processes, including membrane scission, microRNA function, viral budding, and the autophagy pathway in many tissues, including the nervous system. Indeed, dysfunctional ESCRTs are associated with neurodegeneration. However, it remains largely elusive how ESCRTs act in post-mitotic neurons, a highly specialized cell type that requires dynamic changes in neuronal structures and signaling for proper function. Th is review focuses on our current understandings of the functions of ESCRTs in neuronal morphology, synaptic plasticity, and neurodegenerative diseases.

      • KCI등재

        Identification of nucleolar and coiled-body phosphoprotein 1 (NOLC1) minimal promoter regulated by NF-κB and CREB

        ( Xue Song Gao ),( Qi Wang ),( Wei Li ),( Biao Yang ),( Hao Song ),( Wei Ju ),( Shu Nai Liu ),( Jun Cheng ) 생화학분자생물학회(구 한국생화학분자생물학회) 2011 BMB Reports Vol.44 No.1

        Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a phosphoprotein that transiently associates with the mature nucleolar H/ACA and C/D box small nucleolar ribonucleoproteins (snoRNPs). Several lines of evidence indicate that NOLC1 plays an important role in the synthesis of rRNA and the biosynthesis of ribosomes. In the present study, we examined the transcriptional regulation mechanisms that govern the expression of NOLC1. We first performed functional dissection of the NOLC1 promoter. We demonstrated that transcription factors NF-κB and CREB could bind to the minimal NOLC1 promoter. This was demonstrated by electrophoretic mobility shift assays and chromatin immunoprecipitation. Mutagenesis and overexpression assays revealed that NF-κB and CREB positively regulated the NOLC1 promoter. These findings may provide new insight into the mechanisms that regulate NOLC1 expression. [BMB reports 2011; 44(1): 70-75]

      • KCI등재

        Numerical simulations and surrogate-based optimization of cavitation performance for an aviation fuel pump

        Xing’an Zhao,Biao Huang,Tairan Chen,Guoyu Wang,Deming Gao,Jing Zhao 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.2

        We used computational modeling to investigate the cavitation performance of an aviation fuel pump, and optimize structural parameters using the surrogate-based method. In the numerical simulation, a rotation-curvature correction was adapted to the k-ε turbulence model, and a four-component surrogate fuel was selected to reproduce the physical properties of the China RP-3 kerosene. Then the performance of the aviation fuel pump was predicted. In the optimization, based on the series of the numerical results, Surrogate-based analysis and optimization (SBAO) was used to optimize the structural parameters of the fuel pump (the variation of the outlet blade angle for the inducer △β b1 and the variation of the inlet blade angle for the impeller △β b2 ). The results show that the prediction of cavitation performance agrees well with the experimental data. The results show that cavitation areas are mainly distributed in the inlet of the inducer. The volume of cavities grows with the decreasing NPSHa. The head of the fuel pump has a sudden head-drop when NPSHa ≤ 5.64 m. Furthermore, the surrogate-based approach is available in structural optimization of the fuel pump. The cavitation performance of the optimized pump improved about 22 % with a little drop of head coefficient when △β b1 = 4.33° and △β b2 = 3.24°. The numerical approach employed in this paper can accurately predict the cavitating flow of the high rotating speed fuel pump and the surrogate-based method is available in the structural optimization for a better cavitation performance.

      • SCOPUSKCI등재

        Neuronal Functions of ESCRTs

        Lee, Jin-A,Gao, Fen-Biao The Korean Society for Brain and Neural Science 2012 Experimental Neurobiology Vol.21 No.1

        <P>The endosomal sorting complexes required for transport (ESCRTs) regulate protein trafficking from endosomes to lysosomes. Recent studies have shown that ESCRTs are involved in various cellular processes, including membrane scission, microRNA function, viral budding, and the autophagy pathway in many tissues, including the nervous system. Indeed, dysfunctional ESCRTs are associated with neurodegeneration. However, it remains largely elusive how ESCRTs act in post-mitotic neurons, a highly specialized cell type that requires dynamic changes in neuronal structures and signaling for proper function. This review focuses on our current understandings of the functions of ESCRTs in neuronal morphology, synaptic plasticity, and neurodegenerative diseases.</P>

      • KCI등재

        Numerical investigation on the influence of surface tension and viscous force on the bubble dynamics with a CLSVOF method

        Zhiying Wang,Yikai Li,Biao Huang,Deming Gao 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.6

        We numerically investigated the rising of bubbles in a quiescent liquid layer. The numerical simulation is performed by solving the incompressible, multiphase Navier-Stokes equations via computational code in axisymmetric coordinates using a Coupled level-set and volume-of-fluid (CLSVOF) method. The numerical results show that the CLSVOF method with a novel algebraic relation between F and f for axisymmetric two-phase flows not only can predict the bubble surface accurately, but also overcome the deficiency in preserving volume conservation. The effects of the Reynolds number Re and the Bond number Bo on the bubble deformation and its motion are investigated. The results show that with the increasing of Re (10 < Re < 150), the bubble shape transfers from oblate ellipsoidal cap to toroidal when Bo = 116. With the increasing of Bo (10 < Bo < 700), the bubble shape transfers from oblate ellipsoidal to toroidal when Re = 30. Although the toroidal bubble shapes are reached in these two cases, the transition modes are different. For the case Bo = 116, the bubble front is pierced by an upward jet from the rear of the bubble. While for the case Re = 30, the rear of the bubble is pierced by a downward jet from the front part.

      • KCI등재
      • KCI등재

        Vibration characteristic analysis of gearbox based on dynamic excitation with eccentricity error

        Wen Liu,Hang Zhao,Tengjiao Lin,Biao Gao,Yun Yang 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.11

        In this study, the vibration characteristics of gearbox considering the eccentricity error and the friction excitation of helical gear pair were evaluated theoretically and experimentally. A geometric model of a single-stage helical gear pair with eccentricity error was established to obtain the calculation formula of the length of the dynamic contact line and the friction excitation. The multi-degree-of-freedom dynamic model of the transmission system was established considering the influences of tooth friction, support stiffness and damping, meshing stiffness and damping, static error, and dynamic tooth backlash. Then, the dynamic meshing forces of the system were obtained and applied to the gearbox for vibration response analysis using mode superposition method. A correlation test rig was developed to measure vibration under different operating conditions for verifying the correctness of the simulation models. Comparison between simulation and test was performed to demonstrate the accuracy of the proposed model in predicting vibrations. Results showed that eccentricity greatly influenced the overall vibration characteristics. The relative error between measurement and prediction can be significantly reduced by considering the eccentricity error in the dynamic model of transmission system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼