RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Conjugate finite-step length method for efficient and robust structural reliability analysis

        Keshtegar, Behrooz Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.4

        The Conjugate Finite-Step Length" (CFSL) algorithm is proposed to improve the efficiency and robustness of first order reliability method (FORM) for reliability analysis of highly nonlinear problems. The conjugate FORM-based CFSL is formulated using the adaptive conjugate search direction based on the finite-step size with simple adjusting condition, gradient vector of performance function and previous iterative results including the conjugate gradient vector and converged point. The efficiency and robustness of the CFSL algorithm are compared through several nonlinear mathematical and structural/mechanical examples with the HL-RF and "Finite-Step-Length" (FSL) algorithms. Numerical results illustrated that the CFSL algorithm performs better than the HL-RF for both robust and efficient results while the CFLS is as robust as the FSL for structural reliability analysis but is more efficient.

      • SCIESCOPUS

        Relaxed performance measure approach for reliability-based design optimization

        Keshtegar, Behrooz,Lee, Ikjin Springer-Verlag 2016 Structural and multidisciplinary optimization Vol.54 No.6

        <P>The efficiency and robustness of reliability analysis methods are important factors to evaluate the probabilistic constraints in reliability-based design optimization (RBDO). In this paper, a relaxed mean value (RMV) approach is proposed in order to evaluate probabilistic constraints including convex and concave functions in RBDO using the performance measure approach (PMA). A relaxed factor is adaptively determined in the range from 0 to 2 using an inequality criterion to improve the efficiency and robustness of the inverse first-order reliability methods. The performance of the proposed RMV is compared with six existing reliability methods, including the advanced mean value (AMV), conjugate mean value (CMV), hybrid mean value (HMV), chaos control (CC), modified chaos control (MCC), and conjugate gradient analysis (CGA) methods, through four nonlinear concave and convex performance functions and three RBDO problems. The results demonstrate that the proposed RMV is more robust than the AMV, CMV, and HMV for highly concave problems, and slightly more efficient than the CC, MCC, and CGA methods. Furthermore, the proposed relaxed mean value guarantees robust and efficient convergence for RBDO problems with highly nonlinear performance functions.</P>

      • KCI등재

        Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

        Behrooz Keshtegar,Reza Kolahchi 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.28 No.2

        First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton’s principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

      • KCI등재

        Conjugate finite-step length method for efficient and robust structural reliability analysis

        Behrooz Keshtegar 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.4

        The Conjugate Finite-Step Length” (CFSL) algorithm is proposed to improve the efficiency and robustness of first order reliability method (FORM) for reliability analysis of highly nonlinear problems. The conjugate FORM-based CFSL is formulated using the adaptive conjugate search direction based on the finite-step size with simple adjusting condition, gradient vector of performance function and previous iterative results including the conjugate gradient vector and converged point. The efficiency and robustness of the CFSL algorithm are compared through several nonlinear mathematical and structural/mechanical examples with the HL-RF and “Finite-Step-Length” (FSL) algorithms. Numerical results illustrated that the CFSL algorithm performs better than the HL-RF for both robust and efficient results while the CFLS is as robust as the FSL for structural reliability analysis but is more efficient.

      • Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

        Keshtegar, Behrooz,Tabatabaei, Javad,Kolahchi, Reza,Trung, Nguyen-Thoi Techno-Press 2020 Advances in concrete construction Vol.9 No.3

        Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼