RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Analyzing neuroimaging data with subclasses: A shrinkage approach

        Hohne, J.,Bartz, D.,Hebart, M.N.,Muller, K.R.,Blankertz, B. ACADEMIC PRESS 2016 NEUROIMAGE Vol.124 No.1

        Among the numerous methods used to analyze neuroimaging data, Linear Discriminant Analysis (LDA) is commonly applied for binary classification problems. LDAs popularity derives from its simplicity and its competitive classification performance, which has been reported for various types of neuroimaging data. Yet the standard LDA approach proves less than optimal for binary classification problems when additional label information (i.e. subclass labels) is present. Subclass labels allow to model structure in the data, which can be used to facilitate the classification task. In this paper, we illustrate how neuroimaging data exhibit subclass labels that may contain valuable information. We also show that the standard LDA classifier is unable to exploit subclass labels. We introduce a novel method that allows subclass labels to be incorporated efficiently into the classifier. The novel method, which we call Relevance Subclass LDA (RSLDA), computes an individual classification hyperplane for each subclass. It is based on regularized estimators of the subclass mean and uses other subclasses as regularization targets. We demonstrate the applicability and performance of our method on data drawn from two different neuroimaging modalities: (I) EEG data from brain-computer interfacing with event-related potentials, and (II) fMRI data in response to different levels of visual motion. We show that RSLDA outperforms the standard LDA approach for both types of datasets. These findings illustrate the benefits of exploiting subclass structure in neuroimaging data. Finally, we show that our classifier also outputs regularization profiles, enabling researchers to interpret the subclass structure in a meaningful way. RSLDA therefore yields increased classification accuracy as well as a better interpretation of neuroimaging data. Since both results are highly favorable, we suggest to apply RSLDA for various classification problems within neuroimaging and beyond.

      • SCISCIESCOPUS

        Validity of Time Reversal for Testing Granger Causality

        Winkler, Irene,Panknin, Danny,Bartz, Daniel,Muller, Klaus-Robert,Haufe, Stefan Institute of Electrical and Electronics Engineers 2016 IEEE transactions on signal processing Vol.64 No.11

        <P>Inferring causal interactions from observed data is a challenging problem, especially in the presence of measurement noise. To alleviate the problem of spurious causality, Haufe (2013) proposed to contrast measures of information flow obtained on the original data against the same measures obtained on time-reversed data. They show that this procedure, time-reversed Granger causality (TRGC), robustly rejects causal interpretations on mixtures of independent signals. While promising results have been achieved in simulations, it was so far unknown whether time reversal leads to valid measures of information flow in the presence of true interaction. Here, we prove that, for linear finite-order autoregressive processes with unidirectional information flow between two variables, the application of time reversal for testing Granger causality indeed leads to correct estimates of information flow and its directionality. Using simulations, we further show that TRGC is able to infer correct directionality with similar statistical power as the net Granger causality between two variables, while being much more robust to the presence of measurement noise.</P>

      • INFLUENCE OF GEAR OIL FORMULATION ON OIL TEMPERATURE

        D. WIENECKE,W. J. BARTZ 한국트라이볼로지학회 2002 한국트라이볼로지학회 학술대회 Vol.2002 No.10

        Friction losses in complex tribe-technical system are revealed primarily through their effect on the operating temperature level. In order to assess the influence of the oil formulation on the temperature level comprehensive tests were run in a model test apparatus consisting of a special adapter for the 4-ball test rig. More than ten with different formulations (different base oils, additive packages and viscosity modifiers) were tested. The resulting temperature levels varied by nearly 25%. The objective of this model testing is to assess the influence of the oil formulation on the operating temperature of vehicle manual transmission. The correlation to the real tribotechnical system was confirmed by a VW Polo transmission test.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼