RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Comparison and Analysis of Main Effects, Epistatic Effects,and QT x Environment Interactions of QTLs for Agronomic Traits Using DH and RILs Populations in Rice

        Xinhua Zhao,Yang Qin,Baoyan Jiav,Suk-Man Kim,Hyun-Suk Lee,Moo-Young Eun,김경민,손재근 한국작물학회 2010 Journal of crop science and biotechnology Vol.13 No.4

        Two genetic linkage maps based on doubled haploid (DH) and recombinant inbred lines (RILs) populations, derived from the same indica-japonica cross ‘Samgang x Nagdong’, were constructed to analyze the quantitative trait loci (QTLs) affecting agronomic traits in rice. The segregations of agronomic traits in RILs population showed larger variations than those in DH population. A total of 10 and 12 QTLs were identified on six chromosomes using DH population and seven chromosomes using RILs population,respectively. Three stable QTLs including pl9.1, ph1.1, and gwp11.1 were detected through different years. The percentages of phenotypic variation explained by individual QTLs ranged from 8 to 18% in the DH population and 9 to 33% in the RILs population. Twenty-three epistatic QTLs were identified in the DH population, while 21 epistatic QTLs were detected in the RILs population. Epistatic interactions played an important role in controlling the agronomic traits genetically. Four significant main-effect QTLs were involved in the digenic interactions. Significant interactions between QTLs and environments (QE) were identified in two populations. The QTLs affecting grain weight per panicle (GWP) were more sensitive to the environmental changes. The comparison and QTLs analysis between two populations across different years should help rice breeders to comprehend the genetic mechanisms of quantitative traits and improve breeding programs in marker-assisted selection (MAS).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼