RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Elastic modulus in large concrete structures by a sequential hypothesis testing procedure applied to impulse method data

        Antonaci, Paola,Bocca, Pietro G.,Sellone, Fabrizio Techno-Press 2007 Structural Engineering and Mechanics, An Int'l Jou Vol.26 No.5

        An experimental method denoted as Impulse Method is proposed as a cost-effective non-destructive technique for the on-site evaluation of concrete elastic modulus in existing structures: on the basis of Hertz's quasi-static theory of elastic impact and with the aid of a simple portable testing equipment, it makes it possible to collect series of local measurements of the elastic modulus in an easy way and in a very short time. A Hypothesis Testing procedure is developed in order to provide a statistical tool for processing the data collected by means of the Impulse Method and assessing the possible occurrence of significant variations in the elastic modulus without exceeding some prescribed error probabilities. It is based on a particular formulation of the renowned sequential probability ratio test and reveals to be optimal with respect to the error probabilities and the required number of observations, thus further improving the time-effectiveness of the Impulse Method. The results of an experimental investigation on different types of plain concrete prove the validity of the Impulse Method in estimating the unknown value of the elastic modulus and attest the effectiveness of the proposed Hypothesis Testing procedure in identifying significant variations in the elastic modulus.

      • SCIESCOPUS

        Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2

        Ferrara, Liberato,Van Mullem, Tim,Alonso, Maria Cruz,Antonaci, Paola,Borg, Ruben Paul,Cuenca, Estefania,Jefferson, Anthony,Ng, Pui-Lam,Peled, Alva,Roig-Flores, Marta,Sanchez, Mercedes,Schroefl, Christ Elsevier 2018 Construction and Building Materials Vol.167 No.-

        <P><B>Abstract</B></P> <P>Heuristically known at least since the first half of XIX century, the self-healing capacity of cement-based materials has been receiving keen attention from the civil engineering community worldwide in the last decade. As a matter of fact, stimulating and/or engineering the aforementioned functionality via tailored addition and technologies, in order to make it more reliable in an engineering perspective, has been regarded as a viable pathway to enhance the durability of reinforced concrete structures and contribute to increase their service life.</P> <P>Research activities have provided enlightening contributions to understanding the mechanisms of crack self-sealing and healing and have led to the blooming of a number of self-healing stimulating and engineering technologies, whose effectiveness has been soundly proved in the laboratory and, in a few cases, also scaled up to field applications, with ongoing performance monitoring. Nonetheless, the large variety of methodologies employed to assess the effectiveness of the developed self-healing technologies makes it necessary to provide a unified, if not standardized, framework for the validation and comparative evaluation of the same self-healing technologies as above. This is also instrumental to pave the way towards a consistent incorporation of self-healing concepts into structural design and life cycles analysis codified approaches, which can only promote the diffusion of feasible and reliable self-healing technologies into the construction market.</P> <P>In this framework the Working Group 2 of the COST Action CA 15202 “Self-healing as preventive repair of concrete structures – SARCOS” has undertaken the ambitious task reported in this paper. As a matter of fact this state of the art provides a comprehensive and critical review of the experimental methods and techniques, which have been employed to characterize and quantify the self-sealing and/or self-healing capacity of cement-based materials, as well as the effectiveness of the different self-sealing and/or self-healing engineering techniques, together with the methods for the analysis of the chemical composition and intrinsic nature of the self-healing products. The review will also address the correlation, which can be established between crack closure and the recovery of physical/mechanical properties, as measured by means of the different reviewed tests.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Review of test methods for assessing healing efficiency. </LI> <LI> Novel perspective in correlating healing to durability and mechanical recovery. </LI> <LI> Correlation between different test methods. </LI> <LI> Characterization methods of healing products. </LI> <LI> Pioneer monitored case studies are presented. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼