RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Transformation of microcystin-LR and olefinic compounds by ferrate(VI): Oxidative cleavage of olefinic double bonds as the primary reaction pathway

        Islam, Ananna,Jeon, Dahee,Ra, Jiwoon,Shin, Jaedon,Kim, Tae-Young,Lee, Yunho Elsevier 2018 Water research Vol.141 No.-

        <P><B>Abstract</B></P> <P>The presence of toxic microcystins in algal-impacted surface waters is a concern for drinking water quality management. In this study, the potential of ferrate(VI) to eliminate microcystins during drinking water treatment was assessed by investigating reaction kinetics, reaction sites, transformation products, and toxicity changes for the oxidation of microcystin-LR (MC-LR) as a representative microsystin. The investigations also included several substructural model compounds of MC-LR, such as cinnamic acid and sorbic acid, to elucidate the major transformation products and pathways of MC-LR and olefinic compounds. Second-order rate constants were determined in the pH range 6–10.4 for the reaction of ferrate(VI) with MC-LR and the model compounds. The kinetic data revealed that the olefinic double bonds in the Adda and Mdha residues of MC-LR were the primary ferrate(VI) reaction sites, while the phenyl or guanidine moiety was not the reaction site. This finding was supported by detection and identification of the MC-LR transformation products of double bond cleavage, with high peak abundance in the liquid chromatography-mass spectrometry. Furthermore, the reaction of ferrate(VI) with cinnamic and sorbic acids formed the corresponding aldehydes and organic acids with near complete carbon mass balance, indicating the oxidative cleavage of the double bonds as the primary reaction pathway. A quantitative protein phosphatase 2A (PP2A) binding assay for ferrate(VI)-treated MC-LR solutions showed that the MC-LR transformation products exhibited negligible PP2A binding activity compared to that of the parent MC-LR. Oxidation experiments in a filtered river water matrix spiked with MC-LR demonstrated the efficient elimination of MC-LR during water treatment with ferrate(VI).</P> <P><B>Highlights</B></P> <P> <UL> <LI> Olefinic double bonds of MC-LR are the major reaction sites for Fe(VI) oxidation. </LI> <LI> Cleavage of olefins forming two carbonyls is the primary reaction pathway for Fe(VI). </LI> <LI> Hydroxylation of double bond and phenyl moieties of MC-LR are the minor pathways. </LI> <LI> Transformation products of MC-LR by Fe(VI) show negligible PP2A binding activity. </LI> <LI> Efficient elimination of MC-LR is demonstrated in a river water treatment with Fe(VI). </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼