RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Static analysis of nanobeams using nonlocal FEM

        Amal E. Alshorbagy,M. A. Eltaher,F. F. Mahmoud 대한기계학회 2013 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.27 No.7

        A very efficiently finite element model is developed for static analysis of nanobeams. Nonlocal differential equation of Eringen is exploited to reveal a scale effect of nanobeams through nonlocal Euler-Bernoulli beam theory. The equilibrium equation of nonlocal beam is derived based on the variational statement. The element stiffness matrix and force vector are presented. The novelty and accuracy of this model is presented and verified. It is found that, this model is more accurate than others and can consider as a benchmark. The effects of nonlocality, boundary conditions, and slenderness ratio are figured out. The deflection of multi-span nanobeam is also illustrated. The present model can be used for static analysis of single-walled carbon nanotubes. Complex geometry and nonlinear boundary conditions can also be included.

      • KCI등재

        Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

        Ahmed E. Soliman,Mohamed A. Eltaher,Mohamed A. Attia,Amal E. Alshorbagy 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

      • SCIESCOPUS

        Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

        Soliman, Ahmed E.,Eltaher, Mohamed A.,Attia, Mohamed A.,Alshorbagy, Amal E. Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

      • KCI등재

        Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

        Mohamed A. Eltaher,Mohamed A. Attia,Ahmed E. Soliman,Amal E. Alshorbagy 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

      • SCIESCOPUS

        Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

        Eltaher, Mohamed A.,Attia, Mohamed A.,Soliman, Ahmed E.,Alshorbagy, Amal E. Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

      • KCI등재

        Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

        Mohamed A Eltaher,Fatema-Alzahraa Omar,Waleed S. Abdalla,Abdallah M. Kabeel,Amal E. Alshorbagy 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.76 No.1

        This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long–range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin–Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler–Bernoulli nanobeam are derived by Hamilton’s principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell’s equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2≤α≤0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

      • KCI등재

        Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

        Mohamed A. Eltaher,Fatema-Alzahraa Omar,Azza M. Abdraboh,Waleed S. Abdalla,Amal E. Alshorbagy 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.2

        This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler.Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼