RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

        Ali Meksi,Hadj Youzera,Mohamed Sadoune,Ali Abbache,Sid Ahmed Meftah,Abdelouahed Tounsi,Muzamal Hussain 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.44 No.1

        The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton’s principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

      • KCI등재후보

        Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method

        Abbache Ali,Hadj Youzera,Moussa Abualnour,Mohammed Sid Ahmed Houari,Sid Ahmed Meftah,Abdelouahed Tounsi 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.80 No.2

        This paper deals with the secondary vibration problem in the superharmonic case near the harmonic excitation of 1/3ωl, arising from the vibration nonlinearity that characterizes the slender and less damping laminated beam with composite material core. For this aim the multiple scale method in conjunction with the higher order zigzag theories are used to obtain the resonance responses. In the present work the nonlinear forced vibration problem of sandwich beams under harmonic excitation is solved by the multiples scales method, based by the introduction of an artificial parameter with higher order expansions, to control the nonlinear analytical solutions. The application of this method demonstrates the sensitivity of the sandwich beams with viscoelastic composite layer to the secondary superharmonic vibrations. Following, parametric study is conducted to demonstrate the vulnerability of the laminated structures to the superharmonic vibrations and to reduce as far as possible the amplitude vibrations achieved by more appropriated structural design. The results reveal the effect of the slenderness of the sandwich beams on the hardening changes. In the other hand the results demonstrate the importance of fibre orientation angle to reduce as far as possible the amplitude responses of the sandwich structures in superharmonic vibration case.

      • Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

        Hadj Youzera,Abbache Ali,Sid Ahmed Meftah,Abdelouahed Tounsi,Muzamal Hussain 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.44 No.1

        The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼