RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

        Ahmed Amine Daikh,Ahmed Drai,Mohamed Ouejdi Belarbi,Mohammed Sid Ahmed Houari,Benoumer Aour,Mohamed A. Eltaher,Norhan A. Mohamed Techno-Press 2024 Advances in nano research Vol.16 No.3

        In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

      • KCI등재

        Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

        Mohammed Sid Ahmed Houari,Aicha Bessaim,Fabrice Bernard,Abdelouahed Tounsi,S. R. Mahmoud 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.28 No.1

        A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (<i>ε<sub>z</sub></i> ≠ 0) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

      • Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

        Ahmed Drai,Ahmed Amine Daikh,Mohamed Oujedi Belarbi,Mohammed Sid Ahmed Houari,Benoumer Aour,Amin Hamdi,Mohamed A. Eltaher Techno-Press 2023 Advances in nano research Vol.14 No.3

        This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

      • Shear correction factors of a new exponential functionally graded porous beams

        Mohammed Sid Ahmed Houari,Aicha Bessaim,Tarek Merzouki,Ahmed Amine Daikh,Aman Garg,Abdelouahed Tounsi,Mohamed A. Eltaher,Mohamed-Ouejdi Belarbi 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.89 No.1

        This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porositydependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensates for the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner’s analysis, particularly when transitioning from the two-dimensional case (plate) to the onedimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changes in FG beams without porosity and the SCF by comparing them with available results.

      • KCI등재

        A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams

        Mohamed Zidi,Mohammed Sid Ahmed Houari,Abdelouahed Tounsi,Aicha Bessaim,S. R. Mahmoud 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.64 No.2

        In this article, a novel simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) beams is proposed. The beauty of this theory relies on its 2-unknowns displacement field as the Euler- Bernoulli beam theory, which is even less than the Timoshenko beam theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton‟s principle. Analytical solutions for the bending and free vibration analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending and dynamic of FG beams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory results. The results obtained are found to be accurate.

      • KCI등재

        A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates

        Ahmed Hamidi,Abdelouahed Tounsi,Mohammed Sid Ahmed Houari,S. R. Mahmoud 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.18 No.1

        In this research, a simple but accurate sinusoidal plate theory for the thermomechanical bending analysis of functionally graded sandwich plates is presented. The main advantage of this approach is that, in addition to incorporating the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 as in the well-known conventional sinusoidal plate theory (SPT). The material properties of the sandwich plate faces are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is made of an isotropic ceramic material. Comparison studies are performed to check the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical behavior of functionally graded sandwich plates. The effect of side-to-thickness ratio, aspect ratio, the volume fraction exponent, and the loading conditions on the thermomechanical response of functionally graded sandwich plates is also investigated and discussed.

      • KCI등재

        A new simple shear and normal deformations theory for functionally graded beams

        Mohamed Bourada,Abdelouahed Tounsi,Abdelhakim Kaci,Mohammed Sid Ahmed Houari 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.18 No.2

        In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (εz= 0) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

      • KCI등재

        Thermomechanical bending investigation of FGM sandwich plates using four shear deformation plate theory

        Ahmed Bouamoud,Belhadj Boucham,Fouad Bourada,Mohammed Sid Ahmed Houari,Abdelouahed Tounsi 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.32 No.5

        In this work, a four-variable refined plate model is applied to study the thermomechanical bending of two kinds of functionally graded material (FGM) sandwich plates. The sandwich core of one kind is isotropic with the FGM face sheets whereas in the second kind, the sandwich core is FGM with the isotropic and homogeneous face sheets. By considering only four unknown variables, the governing equations are written based on the principle of virtual work and then Navier method is employed to solve these equations. Deflections and stresses of two kinds of FGM sandwich structures are analyzed and discussed. The validity and efficiency of the proposed model is checked by comparing it with various available solutions in the literature. The effects of volume fraction distribution, geometric ratio and thermal load on thermomechanical bending properties of FGM sandwich plate are investigated in detail.

      • KCI등재

        A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

        Houari Hachemi,Abdelhakim Kaci,Mohammed Sid Ahmed Houari,Mohamed Bourada,Abdelouahed Tounsi,S.R. Mahmoud 국제구조공학회 2017 Steel and Composite Structures, An International J Vol.25 No.6

        In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, sideto- thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

      • KCI등재

        On static bending of multilayered carbon nanotube-reinforced composite plates

        Ahmed Amine Daikh,Ismail Bensaid,Attia Bachiri,Mohamed Sid Ahmed Houari,Abdelouahed Tounsi,Tarek Merzouki 사단법인 한국계산역학회 2020 Computers and Concrete, An International Journal Vol.26 No.2

        In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier’s series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼