http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Effects of Monensin on Metabolism and Production in Dairy Saanen Goats in Periparturient Period
Sadjadian, Rasool,Seifi, Hesam A.,Mohri, Mehrdad,Naserian, Abbas Ali,Farzaneh, Nima Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.1
This trial evaluated the effects of dietary supplementation with monensin sodium on dry matter intake, metabolic parameters and milk yield and milk composition of dairy Saanen goats in the periparturient period. Twelve Saanen pregnant dairy goats were assigned to a treatment and a control group. Saanen goats were fed monensin as its 10% sodium salt in the amount of 33 mg/kg of total dry matter intake during 30 d before parturition till d 42 in milk. Blood samples were collected from each goat at d 30, 15 and 7 before expected kidding time and also in d 1, 7, 13, 19, 21, 28, 35 and 42 postpartum. The serum concentrations of ${\beta}$-Hydroxybutyrate (BHBA), non-esterifed fatty acid (NEFA), calcium, magnesium, inorganic phosphorus, cholesterol, triglyceride, urea, total protein, albumin and glucose and aspartate aminotransferase (AST) activity were determined. The BHBA concentration significantly decreased in goats, which received monensin in comparison to controls in the postpartum period (p = 0.049). The concentration of sodium (Na) was significantly influenced by monensin treatment in the postpartum period (p = 0.048). In addition, the difference in dry matter intake was highly significant between the two groups during the pre-partum period. Controls had more dry matter intake (DMI) than treatment goats (p = 0.0001). Mean 3.5% fat corrected milk production was not influenced by monensin treatment. However, milk fat percentage was significantly decreased in monensin treated goats (p = 0.0017).
S. A. Meftah,F. Mohri,E. M. Daya 대한토목학회 2013 KSCE JOURNAL OF CIVIL ENGINEERING Vol.17 No.2
The present study investigates the dynamic analysis of Reinforced Concrete (RC) coupled shear walls strengthened by bonded Carbon Fibre Reinforced Polymer (CFRP) composite plates applied on both sides of the coupling beams. For this purpose, new finite element models are developed for both the walls and strengthened coupling beams. In the validation process of the proposed model,static and free vibration analyses of coupled shear walls were firstly studied. Comparisons with ABAQUS code using shell elements were made and good agreement was observed. After this stage, dynamic analysis was carried out under El Centro and Northridge earthquake records. In these conceptual studies, the maximum top lateral deflection responses of strengthened and unstrengthened RC coupled shear walls are computed. The obtained results showed that mitigation of seismic behaviour of RC coupled shear walls by using CFRP bonded composite plates depends on the geometrical characteristics of shear wall structure and dominant range frequencies of the input earthquake records.