RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 해사(海砂)의 기본성질(基本性質)과 잔골재로서의 이용(利用) 방안(方案)에 관(關)한 연구(硏究)

        황경구 ( Kyung Koo Hwang ),전현우 ( Hyun Woo Jun ) 한국농공학회 1976 韓國農工學會誌 : 전원과 자원 Vol.18 No.4

        1. Fine aggregates of concrete are very important for the construction works and construction cost determination. Most of fine aggregates are from the river sand, but the amount of storage in the river side is steadily decreasing due to continuous construction works. Therefore, another source of fine aggregates is needed to meet increasied demand of sand. 2. Beach sand is a possible source of fine aggregates. But rust of steel bar is caused by CL-chemical of beach sand. Therefore, desalinization of beach sand is requested to get durable reinforced concrete. Economical methods of desalinization are as follows. (a) Flooding and drainage method. (b) Washing of beach sand with water supply and mixing. (c) Spreading of beach sand on the land and leaching by rain water for a few month. 3. Hardening of concrete with beach sand is accelerated due to salt, Thus early stage strength increase leads to make cracks. Also later stage strength decreases and durability becomes worse. By using appropriate admixture, the quality of concrete can be improved.

      • KCI우수등재

        해사의 기본성질과 잔골재로서의 이용 방안에 관한 연구

        황경구,전현우,Hwang, Kyung-Koo,Jun, Hyun-Woo 한국농공학회 1976 한국농공학회논문집 Vol.18 No.4

        1. Fine aggregates of concrete are very important for the construction works and construction cost determination. Most of fine aggregates are from the river sand, but the amount of storage in the river side is steadily decreasing due to continuous construction works. Therefore, another source of fine aggregates is needed to meet increasied demand of sand. 2. Beach sand is a possible source of fine aggregates. But rust of steel bar is caused by CL-chemical of beach sand. Therefore, desalinization of beach sand is requested to get durable reinforced concrete. Economical methods of desalinization are as follows. (a) Flooding and drainage method. (b) Washing of beach sand with water supply and mixing. (c) Spreading of beach sand on the land and leaching by rain water for a few month. 3. Hardening of concrete with beach sand is accelerated due to salt, Thus early stage strength increase leads to make cracks. Also later stage strength decreases and durability becomes worse. By using appropriate admixture, the quality of concrete can be improved.

      • Cemeso1혼화제(混和劑)가 콘크리트의 압축강도(壓縮强度)와 내산성(耐酸性)에 미치는 영향(影響)에 관(關)한 연구(硏究)

        고재군 ( Chae Koon Ko ),황경구 ( Kyung Koo Hwang ) 한국농공학회 1975 韓國農工學會誌 : 전원과 자원 Vol.17 No.2

        This study was conducted to investigate some effects of Cemesol on acidresistance and compressive strength of concrete. In mix design of concrete, the cemesol was used as an admixture of cement, and it was added to the mix in an amount equal to 0.1%, 0.2%, 0.3%, and 0.4% by weight of cement of the mix. Concrete specimens were made in accordance with the. Korean Standard Specification for concrete and they were tested for acid-resistance and compressive strength at 2 weeks intervals through 8 weeks. The tests were performed in two cases non-curing and curing for 28 days. The results obtained from the tests are summarized as follows. 1. Refering to acid-resistance test, the cemesol was comparatively effective at every cemesol content except 0.3% in case of non-curing and it was found that cemesol content of 0.4% was the optimum. On the other hand, the cemesol was ineffective in case of curing, but it was seen that cemesol content of 0.1% had some effect at 6 to 8 weeks curing only. 2. Refering to compressive strength test, the cemesol was remarkably effective at a content of 0.1% but it was also shown most inefiective at content of 0.3% in case of non-curing. On the other hand the cemesol was comparatively effective at every content of cemesol except a content of 0.2% in case of curing and it was determined that the cemesol content of 0.3% may be an optimum content. 3. Since optimum cemesol content varied according to acid-resistance, compressive strength and cases such as non-curing and curing, as indicated above may be desirable to choose an optimum cemesol content suitable for purposes and ciroumstances of construction works or conditions of location. 4. The corrosive rate was proportional to compressive strength in case of non-curing, but the relation was reversed in case of curing. It was found that corrosive rate for 8 weeks did not influence compressive strength in case of non-curing but compressive strength in case of curing begins to vary under the influence of corrosion. Thus, corrosion may be more serious to compressive strength in case of curing than that in case of non-curing.

      • 콘크리트의 내해수성(耐海水性) 시험(試驗)

        고재군 ( Chae Koon Koh ),황경구 ( Kyung Koo Hwang ) 한국농공학회 1974 韓國農工學會誌 : 전원과 자원 Vol.16 No.3

        This test was attempted to investigate the effects of some mix designs of concreteon the compressive strengths and corrosive rates when exposed to sea water of the West Sea. In this test, concrete mixes consisted of an ordinary concrete, a pozzolan concrete and concretes with different admixtures such as fly ash, pozzolith and vinsol resin. Compressive strengths of the concrete were measured at ages of 1-year and 2-years when exposed to both sea water and fresh water. Corrosive rate was tested at ages of 1-year and 2-years when exposed to sea water only. The results obtained from the test may be summarized as follows: (1) When all of concretes were exposed to fresh water, compressive strength of an ordinary concrete was the lowest at all mixes of concretes, and all of them showed higher strength as the exposing age is longer. It was evidance that the uses of pozsolan cement, fly ash, pozzolith and vinsol resin in mix design of concrete had an effect on increasing compressive strength and that fresh water also had an effect on curing concretes even though at a long-time age. (2) When concretes were exposed sea water, a concrete with fly ash was the highest in compressive strength and its strength was increasing as the exposing age is longer, but the other concretes were decreased at 2-year exposure. It was found that a concrete with fly ash was the most effective on compressive strength of all concrete, but the other concretes were attacked by action of the sea water. (3) The use of vinsol resin admixture was the most resistant to corrosion by sea water, while the use of pozzolith was the most serious at corrosion and the others were corroded to almost same extent. (4) The relationship between corrosions and compressive strengths of concretes was not clearly correlated yet. It was known that the corrosive rate of concretes could not affect to compressive strengths by 2-year exposure of the sea water. (5) Pozzolan concrete was the most effective in compressive strength when exposed to fresh water only, However, the use of a fly ash admixture was available for compressive strength when exposing to both fresh water and sea water. It was also noticed that the use of vinsol resin was not available for strengths of concrete but for resistance to corrosion when exposed to sea water. (6) It was found that the use of pozzolith was so defective in compressive strengths and corrosiive resistance when exposing to sea water that it was only available for fresh water.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼