http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
이덕진,Lee, Deok-Jin 한국전기전자재료학회 2016 전기전자재료학회논문지 Vol.29 No.7
The amount of electrical energy has been increased with the rapid development of the industrial society. Accordingly, operating voltage of the power equipment and facility capacity are continuously increasing. Development trends of recent high-voltage electrical equipment are ultra high-voltage, large-capacity and compact. Early diagnosis of a failure of the power plant has been emerging as an important task as to supply high quality power to users. In this study, we have tried to develope an algorithm for distinguishing an arc fault signal generated in the power plant by using UV sensor.
이덕진,Lee, Deok Jin 한국전기전자재료학회 2018 전기전자재료학회논문지 Vol.31 No.4
In recent years, increasing electricity use has led to considerable interest in green energy. In order to effectively supply, cut off, and operate an electric power system, many electric power facilities such as gas insulation switch (GIS), cable, and large substation facilities with higher densities are being developed to meet demand. However, because of the increased use of aging electric power facilities, safety problems are emerging. Electromagnetic wave and leakage current detection are mainly used as sensing methods to detect live-line partial discharges. Although electromagnetic sensors are excellent at providing an initial diagnosis and very reliable, it is difficult to precisely determine the fault point, while leakage current sensors require a connection to the ground line and are very vulnerable to line noise. The partial discharge characteristic in particular is accompanied by statistical irregularity, and it has been reported that proper statistical processing of data is very important. Therefore, in this paper, we present the results of analyzing ${\Phi}-q-n$ cluster distributions of partial discharge characteristics by using K-means clustering to develop an expert partial discharge diagnosis system generated in a GIS facility.
K-means를 이용한 열화 형태의 패턴화에 관한 연구
이덕진,Lee, Deok-Jin 한국전기전자재료학회 2014 전기전자재료학회논문지 Vol.27 No.12
It has been confirmed that the inner defect of transformer and the perfect diagnosis for aging are closely related to safe electric power transmission system and that the detection of accident and diagnosis technique turn out to be very important issues. Since electric power machinery consists of various kinds of components, however, it is very difficult to make a diagnosis for aging by one parameter. Thus, diagnosis for aging is feasible only through the combination of various parameters. Recently, various expert systems have been developed and applied to diagnosis for aging, but they are not yet reliable enough to apply to the real system. In this paper, XLPE which is ultra high voltage cable insulator material were chosen to investigate the influence of void on insulator material using partial discharge. Obtained data have been processed by PRPD (phased resolved partial discharge) distribution function and K-means. And statistical and cluster distribution of partial discharge have been analysed and investigated.
단결정 실리콘 TFT Cell의 적용에 따른 SRAM 셀의 전기적 특성
이덕진,강이구,Lee, Deok-Jin,Kang, Ey-Goo 한국컴퓨터산업학회 2005 컴퓨터産業敎育學會論文誌 Vol.6 No.5
There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6T Full CMOS SRAM had been continued as the technology advances, However, conventional 6T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6T Full CMOS SRAM is $70{\sim}90F^{2}$, which is too large compared to $8{\sim}9F^{2}$ of DRAM cell. With 80nm design rule using 193nm ArF lithography, the maximum density is 72M bits at the most. Therefore, pseudo SRAM or 1T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed $S^{3}$ cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^{3}$ SRAM cell technology with 100nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.
이덕진,강이구,Lee, Deok-Jin,Kang, Ey-Goo Korea Computer Institute Society 2005 컴퓨터産業敎育學會論文誌 Vol.6 No.5
In this paper, we have simulated a Symmetric Dual-gate Single-Si TFT which has three split floating n+ zones. This structure reduces the kink-effect drastically and improves the on-current. Due to the separated floating n+ zones, the transistor channel region is split into four zones with different lengths defined by a floating n+ region, This structure allows an effective reduction of the kink-effect depending on the length of two sub-channels. The on-current of the proposed dual-gate structure is 0.9mA while that of the conventional dual-gate structure is 0.5mA at a 12V drain voltage and a 7V gate voltage. This result shows a 80% enhancement in on-current. Moreover we observed the reduction of electric field in the channel region compared to conventional single-gate TFT and the reduction of the output conductance in the saturation region. In addition, we also confirmed the reduction of hole concentration in the channel region so that the kink-effect reduces effectively.
전계 시뮬레이션을 이용한 에폭시 복합체의 절연특성에 대한 연구
이덕진(Deok-Jin Lee) 한국컴퓨터정보학회 2021 韓國컴퓨터情報學會論文誌 Vol.26 No.2
본 논문에서는 전기 전자부품 및 기구의 절연재료로 널리 적용되고 있는 에폭시 복합재료의 절연 특성 및 신뢰도를 파악하고자 한다. 이를 위해 경제적, 기계적 요인에 의해 필수적으로 첨가되어야 하는 충진재의 분포에 따른 전계 변화를 예측하기 위하여 전계해석 시뮬레이터를 이용하여 그 결과를 확인하였다. 또한 직류 전압 인가 조건하에서 주변 온도 변화 및 충진재 분포에 따른 절연파괴시험을 수행하였고 그 변화를 관찰하였다. 시편은 에폭시 수지에 충진재를 0, 50, 100[phr] 첨가하여 3종류가 제작되었으며 모든 시편의 경우에서 온도가 증가함에 따라 절연파괴강도가 저하됨을 확인하였다. 시뮬레이션 결과 및 실제 절연강도시험 결과를 비교 고찰하여 전기 기구의 절연설계에 필요한 기술적 적용 가능성을 확인하였다. In this paper, we aimed to identify the insulation characteristics and reliability of Epoxy composites, which are widely used as insulation material for electrical & electronic components and electric appliance. To this end, it was necessary to predict variations of electric field due to the distribution of fillers that must be added by economic and mechanical factors. So, we verified the result using an electric field analysis Simulator. Furthermore, under the condtion of DC voltage application, an dielectirc breakdown test was performed according to ambient temperature changes and the distribution of fillers, and the changes were observed. Three types of specimens were manufactured by adding 0, 50 and 100[phr] filling to Epoxy resin. In all specimens, as temperature was increased, the strength of the dielectric strength was decreased. When comparing the simulation results with the actual dielectric breakdown test results, we was able to confirm the technical applicability required for Insulation design of electric appliance.