RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs

        여운탁,길은경,윤유성,김번영,윤홍준,임지혜,이경연,유영서,안경덕 대한척추신경외과학회 2024 Neurospine Vol.21 No.1

        Objective: This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise. Methods: Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model. Results: The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees. Conclusion: The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.

      • KCI등재

        Genetic Odyssey to Ossification of the Posterior Longitudinal Ligament in the Cervical Spine: A Systematic Review

        원영일,이창현,여운탁,권신원,김치헌,정천기 대한척추신경외과학회 2022 Neurospine Vol.19 No.2

        Despite numerous studies, the pathogenesis of ossification of the posterior longitudinal ligament (OPLL) is still unclear. Previous genetic studies proposed variations in genes related to bone and collagen as a cause of OPLL. It is unclear whether the upregulations of those genes are the cause of OPLL or an intermediate result of endochondral ossification process. Causal variations may be in the inflammation-related genes supported by clinical and updated genomic studies. OPLL demonstrates features of genetic diseases but can also be induced by mechanical stress by itself. OPLL may be a combination of various diseases that share ossification as a common pathway and can be divided into genetic and idiopathic. The phenotype of OPLL can be divided into continuous (including mixed) and segmental (including localized) based on the histopathology, prognosis, and appearance. Continuous OPLL shows substantial overexpression of osteoblast-specific genes, frequent upper cervical involvement, common progression, and need for surgery, whereas segmental OPLL shows moderate-to-high expression of these genes and is often clinically silent. Genetic OPLL seems to share clinical features with the continuous type, while idiopathic OPLL shares features with the segmental type. Further genomic studies are needed to elucidate the relationship between genetic OPLL and phenotype of OPLL.

      • KCI등재

        Mechanical Failure After Total En Bloc Spondylectomy and Salvage Surgery

        권신원,정춘기,원영일,여운탁,박성배,양승헌,이창현,John M. Rhee,김경태,김치헌 대한척추신경외과학회 2022 Neurospine Vol.19 No.1

        Objective: Total en bloc spondylectomy (TES) is a curative surgical method for spinal tumors. After resecting the 3 spinal columns, reconstruction is of paramount importance. We present cases of mechanical failure and suggest strategies for salvage surgery. Methods: The medical records of 19 patients who underwent TES (9 for primary tumors and 10 for metastatic tumors) were retrospectively reviewed. Previously reported surgical techniques were used, and the surgical extent was 1 level in 16 patients and 2 levels in 3 patients. A titanium-based mesh-type interbody spacer filled with autologous and cadaveric bone was used for anterior support, and a pedicle screw/rod system was used for posterior support. Radiotherapy was performed in 11 patients (pre-TES, 5; post-TES, 6). They were followed up for 59 ± 38 months (range, 11–133 months). Results: During follow-up, 8 of 9 primary tumor patients (89%) and 5 of 10 metastatic tumor patients (50%) survived (mean survival time, 124 ± 8 months vs. 51 ± 13 months; p = 0.11). Mechanical failure occurred in 3 patients (33%) with primary tumors and 2 patients (20%) with metastatic tumors (p = 0.63). The mechanical failure-free time was 94.4 ± 14 months (primary tumors, 95 ± 18 months; metastatic tumors, 68 ± 16 months; p = 0.90). Revision surgery was performed in 4 of 5 patients, and bilateral broken rods were replaced with dual cobalt-chromium alloy rods. Repeated rod fractures occurred in 1 of 4 patients 2 years later, and the third operation (with multiple cobalt-chromium alloy rods) was successful for over 6 years. Conclusion: Considering the difficulty of reoperation and patients’ suffering, preemptive use of a multiple-rod system may be advisable.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼