RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Acute Effects of Transforming Growth Factor-β1 on Neuronal Excitability and Involvement in the Pain of Rats with Chronic Pancreatitis

        ( Xiaoyu Zhang ),( Hang Zheng ),( Hong-yan Zhu ),( Shufen Hu ),( Shusheng Wang ),( Xinghong Jiang ),( Guang-yin Xu ) 대한소화기기능성질환·운동학회 2016 Journal of Neurogastroenterology and Motility (JNM Vol.22 No.2

        Background/Aims This study was to investigate whether transforming growth factor-β1 (TGF-β1) plays a role in hyperalgesia in chronic pancreatitis (CP) and the underlying mechanisms. Methods CP was induced in male adult rats by intraductal injection of trinitrobenzene sulfonic acid (TNBS). Abdominal hyperalgesia was assessed by referred somatic behaviors to mechanical stimulation of rat abdomen. Dil dye injected into the pancreas was used to label pancreas-specific dorsal root ganglion (DRG) neurons. Whole cell patch clamp recordings and calcium imaging were performed to examine the effect of TGF-β1 on acutely isolated pancreas-specific DRG neurons. Western blot analysis was carried out to measure the expression of TGF-β1 and its receptors. Results TNBS injection significantly upregulated expression of TGF-β1 in the pancreas and DRGs, and TGF-β1 receptors in DRGs (T9-T13) in CP rats. Intrathecal injection of TGF-β receptor I antagonist SB431542 attenuated abdominal hyperalgesia in CP rats. TGF-β1 application depolarized the membrane potential and caused firing activity of DRG neurons. TGF-β1 application also reduced rheobase, hyperpolarized action potential threshold, and increased numbers of action potentials evoked by current injection of pancreas-specific DRG neurons. TGF-β1 application also increased the concentration of intracellular calcium of DRG neurons, which was inhibited by SB431542. Furthermore, intrathecal injection of TGF-β1 produced abdominal hyperalgesia in healthy rats. Conclusions These results suggest that TGF-β1 enhances neuronal excitability and increases the concentration of intracellular calcium. TGF-β1 and its receptors are involved in abdominal hyperalgesia in CP. This and future study might identify a potentially novel target for the treatment of abdominal pain in CP. (J Neurogastroenterol Motil 2016;22:333-343)

      • SCIESCOPUSKCI등재

        Colonic Hypersensitivity and Sensitization of Voltage-gated Sodium Channels in Primary Sensory Neurons in Rats with Diabetes

        ( Ji Hu ),( Zhen Yuan Song ),( Hong Hong Zhang ),( Xin Qin ),( Shufen Hu ),( Xinghong Jiang ),( Guang Yin Xu ) 대한소화기기능성질환·운동학회 2016 Journal of Neurogastroenterology and Motility (JNM Vol.22 No.1

        Background/Aims Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. Methods Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the control rats received citrate buffer only. Behavioral responses to colorectal distention were used to determine colonic sensitivity in rats. Colon projection DRG neurons labeled with DiI were acutely dissociated for measuring excitability and sodium channel currents by whole-cell patch clamp recordings. Western blot analysis was employed to measure the expression of NaV1.7 and NaV1.8 of colon DRGs. Results STZ injection produced a significantly lower distention threshold than control rats in responding to colorectal distention. STZ injection also depolarized the resting membrane potentials, hyperpolarized action potential threshold, decreased rheobase and increased frequency of action potentials evoked by 2 and 3 times rheobase and ramp current stimulation. Furthermore, STZ injection enhanced neuronal sodium current densities of DRG neurons innervating the colon. STZ injection also led to a significant upregulation of NaV1.7 and NaV1.8 expression in colon DRGs compared with age and sex-matched control rats. Conclusions Our results suggest that enhanced neuronal excitability following STZ injection, which may be mediated by upregulation of NaV1.7 and NaV1.8 expression in DRGs, may play an important role in colonic hypersensitivity in rats with diabetes. (J Neurogastroenterol Motil 2016;22:129-140)

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼