RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        High-effective generation of H2O2 by oxygen reduction utilizing organic acid anodized graphite felt as cathode

        Hongkai Guo,Hu Xu,Chengwen Zhao,Xiangzhong Hao,Ziyuan Yang,Weijun Xu 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.108 No.-

        Achieving high catalytic performance with the lowest cost possible cathode material is critical for electrocatalyticsynthesis of H2O2 by oxygen reduction reaction. In this work, we describe a method ofpreparing highly active yet stable graphite felt electrocatalysts containing ultrahigh-loading oxygen contentby using organic acid anodic modification. The results show that modified graphite felt surface wasmore hydrophilic and introduced a large amount of defect sites and oxygen-containing groups. Moreover,the influence of mass oxalic/citric acid ratio and oxidation time of graphite felt cathode were investigated. As a result, H2O2 electrogeneration was 1.6 times as much as that of virgin graphite felt counterpart at themass oxalic/citric acid ratio of 2:1 oxidation for 40 min. However, overoxidation also impaired the electricalproduction of H2O2 due to decarboxylation. Finally, the effect of cathode potential and reaction pHon graphite felt cathode was optimized. As for the modified graphite felt, the maximum accumulationrate of H2O2 reached 4.5 mg h1 cm2 at the conditions of 0.85 V (SCE), 0.4 L min1 O2 flow rate andpH = 3. In addition, it kept a stable performance for electrochemical generation of H2O2 during 8 cycles.

      • SCIESCOPUSKCI등재

        Construction and Analysis of Food-Grade Lactobacillus kefiranofaciens β-Galactosidase Overexpression System

        ( Xi He ),( Mingjian Luan ),( Ning Han ),( Ting Wang ),( Xiangzhong Zhao ),( Yanyan Yao ) 한국미생물생명공학회(구 한국산업미생물학회) 2021 Journal of microbiology and biotechnology Vol.31 No.4

        Lactobacillus kefiranofaciens contains two types of β-galactosidase, LacLM and LacZ, belonging to different glycoside hydrolase families. The difference in function between them has been unclear so far for practical application. In this study, LacLM and LacZ from L. kefiranofaciens ATCC51647 were cloned into constitutive lactobacillal expression vector pMG36e, respectively. Furtherly, pMG36nlacs was constructed from pMG36e-lacs by replacing erythromycin with nisin as selective marker for food-grade expressing systems in Lactobacillus plantarum WCFS1, designated recombinant LacLM and LacZ respectively. The results from hydrolysis of o-nitrophenyl-β-galactopyranoside (ONPG) showed that the β-galactosidases activity of the recombinant LacLM and LacZ was 1460% and 670% higher than that of the original L. kefiranofaciens. Moreover, the lactose hydrolytic activity of recombinant LacLM was higher than that of LacZ in milk. Nevertheless, compare to LacZ, in 25% lactose solution the galacto-oligosaccharides (GOS) production of recombinant LacLM was lower. Therefore, two β-galactopyranosides could play different roles in carbohydrate metabolism of L. kefiranofaciens. In addition, the maximal growth rate of two recombinant strains were evaluated with different temperature level and nisin concentration in fermentation assay for practical purpose. The results displayed that 37oC and 20-40 U/ml nisin were the optimal fermentation conditions for the growth of recombinant β-galactosidase strains. Altogether the food-grade Expression system of recombinant β-galactosidase was feasible for applications in the food and dairy industry.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼