RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modified Double-Reduction Method considering Strain Softening and Equivalent Influence Angle

        Yifan Chen,Hang Lin,Yixian Wang,Rihong Cao,Chunyang Zhang,Yanlin Zhao 대한토목학회 2020 KSCE JOURNAL OF CIVIL ENGINEERING Vol.24 No.11

        Slope stability has been the research focus in the field of geotechnical engineering. Both the asynchronous decay speeds and distinct stability contributions of cohesion c and friction ϕduring slope instability have been evidenced. In this study, based on linear softening model and weighted average hypothesis, a modified double-reduction method is established. The research includes: 1) the asynchronism between decay speeds of c and ϕ are described by adopting different slopes in linear softening model for c and tanϕ, in which case the respective reduction factors in strength reduction method Fc and Fϕ are solved. 2) The distinct slope stability contributions of c and ϕ is readily linked with the different influences to safety factor, and therefore, introducing the equivalent influence angle θe (defined as the slope angle at which c and ϕ share identical contributions to stability), as well as its determination method. 3) According to weighted average hypothesis that the overall safety factor FS is the weighted average of Fc and Fϕ, the contribution scaling factor μ (defined as the weighted ratio of Fc and Fϕ is proposed, which promotes the solution of respective weighted coefficients wc and wϕ of two reduction factors by combining θe, achieving a new double-reduction method. 4) The validity of this method is verified via comprehensive comparison with existing double-reduction methods of practical slope examples.

      • SCIESCOPUSKCI등재

        Circ_0081143 Contributes to Gastric Cancer Malignant Development and Doxorubicin Resistance by Elevating the Expression of YES1 by Targeting mziR-129-2-3p

        ( Wenting Ou ),( Lin Lin ),( Rihong Chen ),( Qingwen Xu ),( Caijin Zhou ) 대한소화기기능성질환·운동학회 2022 Gut and Liver Vol.16 No.6

        Background/Aims: The increased mortality of gastric cancer (GC) is mainly attributed to the development of chemoresistance. Circular RNAs, as the novel type of biomarkers in GC, have attracted wide attention. The purpose of this study was to investigate the functional role of circ_0081143 in GC with doxorubicin (DR) resistance and its potential action mechanism. Methods: The expression of circ_0081143, miR-129-2-3p and YES proto-oncogene 1 (YES1) in GC tissues and cells was measured by quantitative real-time polymerase chain reaction. The half maximal inhibitory concentration value was calculated based on the MTT cell viability assay. Cell proliferation and apoptosis were monitored by MTT and flow cytometry assays. Transwell assays were employed to check cell migration and invasion. The protein levels of YES1 and apoptosis-related proteins were detected by western blotting. The interaction between miR-129-2-3p and circ_0081143 or YES1 was verified by dual-luciferase reporter and pull-down assays. A tumorigenicity assay was conducted to verify the role of circ_0081143 in vivo. Results: Circ_0081143 was highly expressed in DR-resistant GC tumor tissues and cells. Depletion of circ_0081143 reduced DR resistance and inhibited DR-resistant GC cell proliferation, migration and invasion. Circ_0081143 targeted miR-129-2-3p and inhibited the role of miR-129-2-3p. In addition, YES1 was a target of miR-129-2-3p, and its function was suppressed by miR-129-2-3p. Importantly, circ_0081143 positively modulated the expression of YES1 through mediating miR-129-2-3p. Circ_0081143 knockdown weakened the DR-resistant GC tumor growth in vivo. Conclusions: Circ_0081143 knockdown weakened DR resistance and blocked the development of DR-resistant GC by regulating the miR-129-2-3p/YES1 axis. Our data suggest that circ_0081143 is a promising target for the treatment of GC with DR resistance. (Gut Liver 2022;16:861-874)

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼