RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Numerical investigation for performance prediction of gas dynamic resonant igniters

        Conte, Antonietta,Ferrero, Andrea,Pastrone, Dario Techno-Press 2020 Advances in aircraft and spacecraft science Vol.7 No.5

        The work presented herein is a numerical investigation of the flow field inside a resonant igniter, with the aim of predicting the performances in terms of cavity temperature and noise spectrum. A resonance ignition system represens an attractive solution for the ignition of liquid rocket engines in space missions which require multiple engine re-ignitions, like for example debris removal. Furthermore, the current trend in avoiding toxic propellants leads to the adoption of green propellant which does not show hypergolic properties and so the presence of a reliable ignition system becomes fundamental. Resonant igniters are attractive for in-space thrusters due to the low weight and the absence of an electric power source. However, their performances are strongly influenced by several geometrical and environmental parameters. This motivates the study proposed in this work in which the flow field inside a resonant igniter is numerically investigated. The unsteady compressible Reynolds Averaged Navier-Stokes equations are solved by means of a finite volume scheme and the effects of several wall boundary conditions are investigated (adiabatic, isothermal, radiating). The results are compared with some available experimental data in terms of cavity temperature and noise spectrum.

      • SCIESCOPUSKCI등재

        Effect of Cold Water on Esophageal Motility in Patients With Achalasia and Non-obstructive Dysphagia; A High-resolution Manometry Study

        ( Alessandra Elvevi ),( Ivana Bravi ),( Aurelio Mauro ),( Delia Pugliese ),( Andrea Tenca ),( Ivan Cortinovis ),( Silvano Milani ),( Dario Conte ),( Roberto Penagini ) 대한소화기기능성질환·운동학회 2014 Journal of Neurogastroenterology and Motility (JNM Vol.20 No.1

        Background/Aims Swallowing of cold liquids decreases amplitude and velocity of peristalsis in healthy subjects, using standard manometry. Patients with achalasia and non obstructive dysphagia may have degeneration of sensory neural pathways, affecting motor response to cooling. To elucidate this point, we used high-resolution manometry. Methods Fifteen healthy subjects, 15 non-obstructive dysphagia and 15 achalasia patients, after pneumatic dilation, were studied. The 3 groups underwent eight 5 mL single swallows, two 20 mL multiple rapid swallows and 50 mL intraesophageal water infusion (1 mL/sec), using both water at room temperature and cold water, in a randomized order. Results In healthy subjects, cold water reduced distal contractile integral in comparison with water at room temperature during single swallows, multiple rapid swallows and intraesophageal infusion (ratio cold/room temperature being 0.67 [95% CI, 0.48-0.85], 0.56 [95% CI, 0.19-0.92] and 0.24 [95% CI, 0.12-0.37], respectively). A similar effect was seen in non-obstructive dysphagia patients (0.68 [95% CI, 0.51-0.84], 0.69 [95% CI, 0.40-0.97] and 0.48 [95% CI, 0.20-0.76], respectively), whereas no changes occurred in achalasia patients (1.06 [95% CI, 0.83-1.29], 1.05 [95% CI, 0.77-1.33] and 1.41 [95% CI, 0.84-2.00], respectively). Conclusions Our data suggest impairment of esophageal reflexes induced by cold water in patients with achalasia, but not in those with non obstructive dysphagia. (J Neurogastroenterol Motil 2014;20:79-86)

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼