RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Sonoelectrodeposition of RuO<sub>2</sub> electrodes for high chlorine evolution efficiencies

        트란 루 레,김춘수,윤제용,Luu, Tran Le,Kim, Choonsoo,Yoon, Jeyong The Korean Society of Water and Wastewater 2017 상하수도학회지 Vol.31 No.5

        A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.

      • KCI등재

        Development of templated RuO<sub>2</sub> nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution

        트란 루 레,김춘수,윤제용,Luu, Tran Le,Kim, Choonsoo,Yoon, Jeyong The Korean Society of Water and Wastewater 2017 상하수도학회지 Vol.31 No.5

        $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

      • KCI등재

        Comparable Influencing Factors to evaluate the Phosphate Removal on the Batch and the fix-bed Column by Converter Slag

        이상호,Lee, Sang-Ho The Korean Society of Water and Wastewater 2015 상하수도학회지 Vol.29 No.5

        The influencing factors to remove phosphate were evaluated by converter slag (CS). Experiments were performed by batch tests using different CS sizes and column test. Solutions were prepared at the different pH and concentrations. The maximum removal efficiency was obtained over 98% with the finest particle size, $CS_a$ within 2 hours in batch tests. The removal efficiency was increased in the order of decreasing size with same amount of CS for any pH of solutions. The adsorption data were well fitted to Freundlich isotherm. From the column experiment, the specific factors were revealed that the breakthrough removal capacity (BRC) $x_b/m_{cs}$, was decreased by increasing the influent concentration. The breakthrough time, tb was lasted shorter as increasing the influent concentration. The pH drop simultaneously led to lower BRC drop during the experimental hours. The relation between the breakthrough time and the BRC to influent concentration was shown in the logarithmic decrease. Results suggested that the large surface area of CS possessed a great potential for adsorptive phosphate removal. Consequently particle size and initial concentration played the major influencing factors in phosphate removal by converter slag.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼