RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq

        Chen, Lihe,Lee, Jae Wook,Chou, Chung-Lin,Nair, Anil V.,Battistone, Maria A.,Pă,unescu, Teodor G.,Merkulova, Maria,Breton, Sylvie,Verlander, Jill W.,Wall, Susan M.,Brown, Dennis,Burg, Maurice B. National Academy of Sciences 2017 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.114 No.46

        <P><B>Significance</B></P><P>A long-term goal in mammalian biology is to identify the genes expressed in every cell type of the body. In the kidney, the expressed genes (i.e., transcriptome) of all epithelial cell types have already been identified with the exception of the cells that make up the renal collecting duct, which is responsible for regulation of blood pressure and body fluid composition. Here, single-cell RNA-sequencing was used in mouse to identify transcriptomes for the major collecting duct cell types: type A intercalated cells, type B intercalated cells, and principal cells. The information was used to create a publicly accessible online resource. The data allowed identification of genes that are selectively expressed in each cell type, which is informative for cell-level understanding of physiology and pathophysiology.</P><P>Prior RNA sequencing (RNA-seq) studies have identified complete transcriptomes for most renal epithelial cell types. The exceptions are the cell types that make up the renal collecting duct, namely intercalated cells (ICs) and principal cells (PCs), which account for only a small fraction of the kidney mass, but play critical physiological roles in the regulation of blood pressure, extracellular fluid volume, and extracellular fluid composition. To enrich these cell types, we used FACS that employed well-established lectin cell surface markers for PCs and type B ICs, as well as a newly identified cell surface marker for type A ICs, c-Kit. Single-cell RNA-seq using the IC- and PC-enriched populations as input enabled identification of complete transcriptomes of A-ICs, B-ICs, and PCs. The data were used to create a freely accessible online gene-expression database for collecting duct cells. This database allowed identification of genes that are selectively expressed in each cell type, including cell-surface receptors, transcription factors, transporters, and secreted proteins. The analysis also identified a small fraction of hybrid cells expressing aquaporin-2 and anion exchanger 1 or pendrin transcripts. In many cases, mRNAs for receptors and their ligands were identified in different cells (e.g., <I>Notch2</I> chiefly in PCs vs. <I>Jag1</I> chiefly in ICs), suggesting signaling cross-talk among the three cell types. The identified patterns of gene expression among the three types of collecting duct cells provide a foundation for understanding physiological regulation and pathophysiology in the renal collecting duct.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼