RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Simulated Long-Term Vegetation–Climate Feedbacks in the Tibetan Plateau

        Wei Hua,Zouxin Lin,Donglin Guo,Guangzhou Fan,Yongli Zhang,Kaiqin Yang,Qin Hu,Lihua Zhu 한국기상학회 2019 Asia-Pacific Journal of Atmospheric Sciences Vol.55 No.1

        The Tibetan Plateau (TP) is an important region of land–atmosphere interactions with high climate variability. In this study, an atmosphere–vegetation interaction model was applied to explore the possible responses of vegetation to climate warming, and to assess the impacts of land cover change on the land surface physical processes across the TP. Results showed that long-term warming over the TP could influence vegetation growth via different mechanisms. Most likely, increased temperature would enhance the physiological activity in most high cold areas on the TP, whereas high temperature would inhibit vegetation growth by increasing respiration in areas with favorable water and temperature conditions. In addition, for areas where the climate is warmer but not wetter, higher temperature could influence photosynthesis via the moisture condition of the vegetation rather than by modulating respiration. Numerical simulations demonstrated that vegetation could control the land surface–atmosphere energy balance effectively. The change of land cover from vegetated land to desert steppe decreased the net radiation absorbed by the surface, weakening the surface thermal effects, and reducing sensible and latent heat fluxes. Furthermore, sensitivity simulations also revealed that global warming would likely accelerate vegetation growth in most areas of the TP, resulting in increased surface heat flux.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼