RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An efficient time-variant reliability-based design optimization method based on probabilistic feasible region

        Zihao Wu,Zhenzhong Chen,Ge Chen,Xiaoke Li,Chen Jiang,Xuehui Gan,Haobo Qiu,Liang Gao 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.3

        Time-variant reliability-based design optimization (T-RBDO) issues are probabilistic design problems that assess the dependability of the design across time. The engineering situation is most closely resembled by it. The approaches to resolving T-RBDO problems, nevertheless, are convoluted and time-consuming. In this paper, an effective strategy for solving RBDO issues are extended to resolving TRBDO problems in order to increase efficiency. To solve T-RBDO challenges, the time-variant probabilistic feasible region (T-PFR) approach, which is based on the PFR method for resolving RBDO issues, was presented. The idea of the equivalent inverse most probable point (EIMPP) is put out in this methodology. Based on the EIMPP, the probabilistic feasible region is likewise developed for time-variant constraints. The effective tactic of the proposed method is to identify the non-active time-variant constraints using the probabilistic feasible region and to forego conducting time reliability analysis on them. Three mathematics and two engineering issues demonstrate that the suggested solution is viable and effective.

      • KCI등재

        A novel probabilistic feasible region method for reliability-based design optimization with varying standard deviation

        Zihao Wu,Zhenzhong Chen,Ge Chen,Xiaoke Li,Chen Jiang,Xuehui Gan,Haobo Qiu,Liang Gao 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.9

        An effective method for reliability-based design optimization (RBDO) problems taking uncertainties into account is the probabilistic feasible region (PFR) approach. The PFR approach is built around the fixed nature of the standard deviation in general RBDO problems. Therefore, the accuracy of the PFR approach will be affected when dealing with RBDO problems with varying standard deviation. To improve the accuracy of PFR method in solving the RBDO problems with varying standard deviation, a novel probabilistic feasible region strategy considering varying standard deviations (PFR-vstd) approach is suggested in this paper. In place of the initial probabilistic feasible region in standard normal space, a new probabilistic feasible region is established in original design space in this novel approach. The results of four applications demonstrate the high accuracy and sufficient efficiency of PFR-vstd method. The findings demonstrate that PFR-vstd method is capable of accurately resolving RBDO problems with varying standard deviation.

      • KCI등재후보

        Shear bond failure in composite slabs– a detailed experimental study

        Shiming Chen,Xiaoyu Shi,Zihao Qiu 국제구조공학회 2011 Steel and Composite Structures, An International J Vol.11 No.3

        An experimental study has been carried out to reveal the shear-bond failure mechanism of composite deck slabs. Thirteen full scale simply supported composite slabs are studied experimentally, with the influence parameters like span length, slab depth, shear span length and end anchorage provided by steel headed studs. A dozen of strain gauges and LVDTs are monitored to capture the strain distribution and variation of the composite slabs. Before the onset of shear-bond slip, the longitudinal shear forces along the span are deduced and found to be proportional to the vertical shear force in terms of the shear-bond strength in the m-k method. The test results are appraised using the current design procedures. Based on the partial shear-bond connection at the ultimate state, an improved method is proposed by introducing two reduction factors to assess the moment resistance of a composite deck slab. The new method has been validated and the results predicted by the revised method agree well with the test results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼