RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Depositional and diagenetic controls on the reservoir quality of Upper Triassic Chang-7 tight oil sandstones, southwestern Ordos basin, China

        Ai Wang,Dakang Zhong,Haihua Zhu,Lele Guo,Zhuopei Li,Yangjinfeng Jiang,Xueqi Yang,Rui Xie,Xiaowei Zheng 한국지질과학협의회 2019 Geosciences Journal Vol.23 No.3

        The seventh oil layer of the Upper Triassic Yanchang Formation (Chang-7) tight oil sandstone reservoirs is a major exploration target. A significant amount of hydrocarbons has been discovered in these reservoirs in the southwestern Ordos basin in China. The Chang-7 tight sandstones are characterised as tight with low porosity, low permeability, and strong heterogeneity. This study investigates the sedimentary facies, diagenesis, and their impact on the reservoir quality of the Chang-7 tight oil sandstones. The sandstones were deposited in a deltaic-lacustrine depositional system. Three major depositional facies are identified consisting of delta front fed by braided rivers and meandering rivers, and slump turbidite fans. The depositional environment exerts a key control on reservoir quality. The distinct low-energy sedimentary environment produced fine to very fine-grained sandstones with high matrix and mica contents, characterised by low initial porosity and permeability. Diagenesis mainly comprised mechanical compaction and cementation by quartz, carbonate minerals and various clay minerals. The reservoir properties of the Chang-7 sandstones are generally poor, with porosity of 1.4–20.7% (average porosity 8.6%) and permeability of 0.001–116.7 mD (average 0.2 mD), which are attributed to significant compaction and cementation. Mechanical compaction was more important than cementation for reducing porosity, whereas secondary dissolution porosity was significant for the Chang-7 tight oil sandstones due to closer proximity to the underlying Chang-73 source rocks.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼