RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The effect of non-synchronous sensing on structural identification and its correction

        Zhouquan Feng,Lambros Katafygiotis 국제구조공학회 2016 Smart Structures and Systems, An International Jou Vol.18 No.3

        The goal of this study is to investigate the effect of non-synchronous sensing when using wireless sensors on structural identification and to attempt correcting such errors in order to obtain a better identification result. The sources causing non-synchronous sensing are discussed first and the magnitudes of such synchronization errors are estimated based on time stamps of data samples collected from Imote2 sensors; next the impact of synchronization errors on power spectral densities (PSDs) and correlation functions of output responses are derived analytically; finally a new method is proposed to correct such errors. In this correction method, the corrected PSDs of output responses are estimated using non-synchronous samples based on a modified FFT. The effect of synchronization errors in the measured output responses on structural identification and the application of this correction method are demonstrated using simulation examples. The simulation results show that even small synchronization errors in the output responses can distort the identified modal and stiffness parameters remarkably while the parameters identified using the proposed correction method can achieve high accuracy.

      • Compound damping cable system for vibration control of high-rise structures

        Zhouquan Feng,Jianda Yu,Xiangqi Zhang,Hongxin Sun,Jian Peng 국제구조공학회 2022 Smart Structures and Systems, An International Jou Vol.29 No.4

        High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a thirdorder differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

      • KCI등재

        An Analytical Study on Using Maxwell-Coulomb Friction Damper to Mitigate Quasi-static Response of SDOF Systems

        Longteng Liang,Zhouquan Feng,Hongyi Zhang,Zheng Qing Chen,Linong Liang 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.11

        Excessive cumulative stroke in the longitudinal movement of long-span suspension bridge can led to premature fatigue damage in the bridge's connecting components. However, existing control devices, like viscous damper, remain suboptimal. This paper aims to reveal the underlying mechanism of cumulative stroke control and find an effective control method to address this issue. Firstly, the statistical and frequency characteristics of longitudinal displacement were analyzed based on a 24-hour field measured data set. Secondly, the cumulative stroke control performance of nonlinear viscous damper was evaluated with a SDOF system, uncovering the reasons for their low efficiency in controlling cumulative stroke. Thirdly, the Maxwell-Coulomb friction damper was introduced to control the excessive cumulative stroke, and its effective control performance was validated. Finally, a novel parallel model combining viscous dampers and friction dampers was proposed to leverage the superior performance of friction damper in controlling the cumulative stroke under daily operation condition, while also harnessing the seismic response mitigation capacity of the viscous damper. This research enhances the understanding of cumulative stroke control in long-span suspension bridges and presents an innovative control method by introducing the Maxwell-Coulomb friction damper, highlighting its potential for practical application in bridge engineering.

      • KCI등재

        A two-stage Kalman filter for the identification of structural parameters with unknown loads

        Jia He,Xiaoxiong Zhang,Zhouquan Feng,Zhengqing Chen,Zhang Cao 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.6

        The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼