RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Low Expression of Circulating MicroRNA-34c is Associated with Poor Prognosis in Triple-Negative Breast Cancer

        Zhihao Zeng,Xiaowu Chen,Dajian Zhu,Zhongran Luo,Min Yang 연세대학교의과대학 2017 Yonsei medical journal Vol.58 No.4

        Purpose: The microRNA-34 (miR-34) family is important in tumor regulation. This study aimed to investigate the association of circulating miR-34 family proteins with clinicopathological features and their prognostic value in triple-negative breast cancer (TNBC) patients. Materials and Methods: In this cohort study, 173 TNBC patients admitted to First People’s Hospital of Shunde from May 1, 2009 to April 30, 2013 were enrolled. Meanwhile, 75 age-matched healthy women volunteers were identified as healthy controls (HCs). We examined the expression of miR-34 family (miR-34a/b/c) proteins in plasma collected from TNBC patients before any treatmentwas performed and from age-matched HCs using qPCR methods. Results: The expressions of miR-34a/34b/34c were significantly lower in TNBC patients than in HC (p<0.001, p=0.027, p<0.001, respectively). miR-34a was correlated with tumor grade (p=0.038), lymph node positive (p=0.027), distant metastasis (p=0.004), and surgery (p=0.023); miR-34b was correlated with lymph node positivity (p=0.027); and miR-34c was correlated with tumor grade (p=0.017) and distant metastasis (p<0.001). Kaplan-Meier curve analysis displayed low expression of miR-34a as associated with worse overall survival (OS) (p=0.011), as well as miR-34c low expression (p=0.002). In addition, univariate and multivariate Cox proportional hazards regression was performed, and low expression of miR-34c (p=0.011) was found to be an independent risk factor for OS, as well as tumor grade (p=0.013), lymph node positive (p=0.050), and distant metastasis (p=0.021). Conclusion: In conclusion, this study demonstrated reduced miR-34a/c expression is highly associated with tumor progression and indicated worse prognosis. Also, miR-34c was an independent risk factor for OS in TNBC patients.

      • KCI등재

        Selective oxidation of 5-formyloxymethylfurfural to 2, 5-furandicarboxylic acid with Ru/C in water solution

        Zhihao Si,Xin Zhang,Miao Zuo,Tao Wang,Yong Sun,Xing Tang,Xianhai Zeng,Lu Lin 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.2

        2, 5-furandicarboxylic acid (FDCA) is a one of the most promising biomass-derived chemicals to substitute the non-renewable terephthalic acid as the monomer for producing polyethyleneterephthalate. At present, the oxidation of HMF is regarded as a prevalent way to prepare FDCA. Nevertheless, the isolation and storage of HMF is still a challenge. Herein, based on the higher stability of 5-formyloxymethylfurfural (FMF) than 5-hydroxymethylfurfural (HMF), we present an effective preparation route to prepare FDCA by substituting HMF with FMF as feedstock. A complete conversion of FMF and a 93.55% selectivity of FDCA were obtained in the mixed solvent of water and 1, 2- dioxane using Ru/C as catalyst and O2 as oxidant. An improved process was developed for preparing FDCA using FMF as feedstock. The investigation of conversion pathway showed that FMF and HMF were simultaneously oxidized to 2, 5-diformylfuran (DFF) in a case of the existence of the reversible equilibrium between FMF and HMF. Then DFF was oxidized to 5-formyl-2-furancarboxylic acid (FFCA). Subsequently, FFCA was oxidized to FDCA. In this process, the oxidation of FFCA to FDCA was determined as the rate-determining step. Furthermore, appropriate alkalinity favored the selectivity of FDCA and the conversion of FMF.

      • KCI등재

        Influence of Polyurethane Polymer on the Strength and Mechanical Behavior of Sand-root Composite

        Jin Liu,Zhihao Chen,Zhaojun Zeng,Debi Prasanna Kanungo,Fan Bu,Yuxia Bai,Changqing Qi,Wei Qian 한국섬유공학회 2020 Fibers and polymers Vol.21 No.4

        Vegetation has good application in slope stabilization, but its beneficial effects on reinforcing topsoil are generallylimited by the soil properties it was cultivated in. This study aims at evaluating the strength improvements of sand-rootcomposite by treating with polyurethane polymer and hence investigating the mechanism of polymer-root-soil interactions. Vegetation roots were selected and mixed with dry sand and polymer solution to prepare remolded specimens. A series ofexperimental tests were then performed at different percentages of root content (0, 0.4, 0.8, 1.2, and 1.6 % by weight of drysand) and polymer content (1, 2, and 4 % by weight of dry sand) to evaluate the shear parameters and unconfinedcompressive strength (UCS). The combined mechanism was studied by scanning electron microscopy (SEM) images. Theresults showed that the strengthening effect has greater efficiency with higher polymer content. Through varying contents ofvegetation root, it was found that low root content induced an undesirable weakening effect on the strength of the treated soil. However, this situation was somewhat improved with the increase in root content. The good flexibility of polymers not onlypromote the capacity of soil to energy absorption, but also impart good ductility to soil. The presence of polymers greatlystrengthens soil stability due to its special network structure, by which the improved shear resistance at the root-soil interfaceprovides sufficient anchorage effect for the tensile strength of roots to be fully mobilized. Overall, the synergistic effect ofroot reinforcement and polymer treatment has the potential for its use in soil stabilization.

      • KCI등재

        Efficient conversion of fructose to 5-[(formyloxy)methyl]furfural by reactive extraction and in-situ esterification

        Caixia Xiong,Yong Sun,Juan Du,Wei Chen,Zhihao Si,He Gao,Xing Tang,Xianhai Zeng 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.6

        5-[(Formyloxy)methyl]furfural (FMF), an analogue of 5-(hydroxymethyl)furfural (HMF) is becoming more attractive due to its superior stability and hydrophobicity, which make it easier to refineand store. In the present study, FMF was produced from fructose by one-pot approach in pure formic acid media or by a two-step approach via HMF in choline chloride (ChCl)/fructose deep eutectic solvents (DES) system. A favorable FMF yield of 63.22% was reached by two-step approach. In addition, the effects of reaction parameters, such as temperature and acidity, on preparation of FMF from fructose were systematically investigated. The dehydration of fructose into HMF was confirmed as the rate-controlling step in the consecutive reaction. Ultimately, the separation and purification procedures of FMF were put forward. The FMF with a purity of 98.8% was obtained finally. Meanwhile, the FMF purified by saturated sodium bicarbonate solution showed an excelled storage stability.

      • KCI등재

        Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation

        Xin Lv,Yelidana Nuertai,Qiwei Wang,Di Zhang,Xumin Hu,Jiabao Liu,Ziliang Zeng,Renyuan Huang,Zhihao Huang,Qiancheng Zhao,Wenpeng Li,Zhilei Zhang,Liangbin Gao 대한척추신경외과학회 2024 Neurospine Vol.21 No.1

        Objective: To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters. Methods: Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions. Results: Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO. Conclusion: Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼