RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Serum MicroRNA Levels as a Noninvasive Diagnostic Biomarker for the Early Diagnosis of Hepatitis B Virus-Related Liver Fibrosis

        ( Suxia Bao ),( Jianming Zheng ),( Ning Li ),( Chong Huang ),( Mingquan Chen ),( Qi Cheng ),( Kangkang Yu ),( Shengshen Chen ),( Mengqi Zhu ),( Guangfeng Shi ) 대한간학회 2017 Gut and Liver Vol.11 No.6

        Background/Aims: To investigate the role of selected serum microRNA (miRNA) levels as potential noninvasive biomarkers for differentiating S0-S2 (early fibrosis) from S3-S4 (late fibrosis) in patients with a chronic hepatitis B virus (HBV) infection. Methods: One hundred twenty-three treatment-naive patients with a chronic HBV infection who underwent a liver biopsy were enrolled in this study. The levels of selected miRNAs were measured using a real-time quantitative polymerase chain reaction assay. A logistic regression analysis was performed to assess factors associated with fibrosis progression. Receiver operating characteristic (ROC) curve and discriminant analyses validated these the ability of these predicted variables to discriminate S0-S2 from S3-S4. Results: Serum miR-29, miR-143, miR-223, miR-21, and miR-374 levels were significantly downregulated as fibrosis progressed from S0-S2 to S3-S4 (p<0.05), but not miR-16. The multivariate logistic regression analysis identified a panel of three miRNAs and platelets that were associated with a high diagnostic accuracy in discriminating S0-S2 from S3-S4, with an area under the curve of 0.936. Conclusions: The levels of the studied miRNAs, with the exception of miR-16, varied with fibrosis progression. A panel was identified that was capable of discriminating S0-S2 from S3-S4, indicating that serum miRNA levels could serve as a potential noninvasive biomarker of fibrosis progression. (Gut Liver 2017;11:860-869)

      • KCI등재

        Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

        Wen-jun Luo,Zi-zheng Zhang,Bao-you Wu,Chang-jie Xu,Peng-qi Yang 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.75 No.4

        With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web <wing plate <top plate. (4) When the train is running at a higher speed, the noise and vibration of the bridge structure are larger. (5) The hybrid FE-SEA method is used to predict the structural noise of the box beam, which not only improves the efficiency, but also improves the calculation accuracy, thereby expanding the frequency range of the structural noise and improving the prediction accuracy.

      • KCI등재

        Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study

        Yang Zou,Shuo Ji,Hui Wen Yang,Tao Ma,Yue Kun Fang,Zhi Cheng Wang,Miao Miao Liu,Ping Hui Zhou,Zheng Qi Bao,Chang Chun Zhang,Yu Chen Ye 대한척추신경외과학회 2024 Neurospine Vol.21 No.1

        Objective: This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines. Methods: Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud. Results: In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model. Conclusion: In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼