RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Distributed Adaptive Mixed Self-/Event-triggered Formation Control Approach for Multiple Stratospheric Airships with Relative State Constraints and Input Delay

        Yifei Zhang,Ming Zhu,Tian Chen,Zewei Zheng 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.1

        This paper investigates the distributed formation control problem of multiple stratospheric airships in three-dimensional space with several practical problems, such as relative state constraints, input delay, input saturation and disturbances. An adaptive mixed self-/event-triggered formation control scheme is proposed by combining backstepping control, an adaptation technique and a mixed self-/event-triggered control mechanism. First, a novel relative-error-constraint virtual control law is designed based on the barrier Lyapunov function, which is processed into the desired velocity and angular velocity as the input of the next-step designed controller. Then, an adaptive controller is designed based on a designed adaptive law that is utilized to eliminate the influence of external disturbances, input saturation and input delay. In addition, a mixed self-/event-triggered mechanism is designed in the whole system, involving a self-triggered mechanism in the virtual control law and an event-triggered mechanism in the adaptive controller. All signals in the closed-loop system are proven to be semiglobal, uniform and ultimately bounded, and Zeno behavior is proven to be excluded. Finally, the effectiveness of the proposed method is verified through simulations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼