RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Improvement in Computation of Δ V<sub>10</sub> Flicker Severity Index Using Intelligent Methods

        Moallem, Payman,Zargari, Abolfazl,Kiyoumarsi, Arash The Korean Institute of Power Electronics 2011 JOURNAL OF POWER ELECTRONICS Vol.11 No.2

        The ${\Delta}\;V_{10}$ or 10-Hz flicker index, as a common method of measurement of voltage flicker severity in power systems, requires a high computational cost and a large amount of memory. In this paper, for measuring the ${\Delta}\;V_{10}$ index, a new method based on the Adaline (adaptive linear neuron) system, the FFT (fast Fourier transform), and the PSO (particle swarm optimization) algorithm is proposed. In this method, for reducing the sampling frequency, calculations are carried out on the envelope of a power system voltage that contains a flicker component. Extracting the envelope of the voltage is implemented by the Adaline system. In addition, in order to increase the accuracy in computing the flicker components, the PSO algorithm is used for reducing the spectral leakage error in the FFT calculations. Therefore, the proposed method has a lower computational cost in FFT computation due to the use of a smaller sampling window. It also requires less memory since it uses the envelope of the power system voltage. Moreover, it shows more accuracy because the PSO algorithm is used in the determination of the flicker frequency and the corresponding amplitude. The sensitivity of the proposed method with respect to the main frequency drift is very low. The proposed algorithm is evaluated by simulations. The validity of the simulations is proven by the implementation of the algorithm with an ARM microcontroller-based digital system. Finally, its function is evaluated with real-time measurements.

      • KCI등재

        Improvement in Computation of ΔV_10 Flicker Severity Index Using Intelligent Methods

        Payman Moallem,Abolfazl Zargari,Arash Kiyoumarsi 전력전자학회 2011 JOURNAL OF POWER ELECTRONICS Vol.11 No.2

        The ΔV_10 or 10-Hz flicker index, as a common method of measurement of voltage flicker severity in power systems, requires a high computational cost and a large amount of memory. In this paper, for measuring the ΔV_10 index, a new method based on the Adaline (adaptive linear neuron) system, the FFT (fast Fourier transform), and the PSO (particle swarm optimization) algorithm is proposed. In this method, for reducing the sampling frequency, calculations are carried out on the envelope of a power system voltage that contains a flicker component. Extracting the envelope of the voltage is implemented by the Adaline system. In addition,in order to increase the accuracy in computing the flicker components, the PSO algorithm is used for reducing the spectral leakage error in the FFT calculations. Therefore, the proposed method has a lower computational cost in FFT computation due to the use of a smaller sampling window. It also requires less memory since it uses the envelope of the power system voltage. Moreover,it shows more accuracy because the PSO algorithm is used in the determination of the flicker frequency and the corresponding amplitude. The sensitivity of the proposed method with respect to the main frequency drift is very low. The proposed algorithm is evaluated by simulations. The validity of the simulations is proven by the implementation of the algorithm with an ARM microcontroller-based digital system. Finally, its function is evaluated with real-time measurements.

      • SCIESCOPUSKCI등재

        Improvement in Computation of ∆ V₁₀ Flicker Severity Index Using Intelligent Methods

        Payman Moallem,Abolfazl Zargari,Arash Kiyoumarsi 전력전자학회 2011 JOURNAL OF POWER ELECTRONICS Vol.11 No.2

        The ?V₁? or 10-㎐ flicker index, as a common method of measurement of voltage flicker severity in power systems, requires a high computational cost and a large amount of memory. In this paper, for measuring the ?V₁? index, a new method based on the Adaline (adaptive linear neuron) system, the FFT (fast Fourier transform), and the PSO (particle swarm optimization) algorithm is proposed. In this method, for reducing the sampling frequency, calculations are carried out on the envelope of a power system voltage that contains a flicker component. Extracting the envelope of the voltage is implemented by the Adaline system. In addition, in order to increase the accuracy in computing the flicker components, the PSO algorithm is used for reducing the spectral leakage error in the FFT calculations. Therefore, the proposed method has a lower computational cost in FFT computation due to the use of a smaller sampling window. It also requires less memory since it uses the envelope of the power system voltage. Moreover, it shows more accuracy because the PSO algorithm is used in the determination of the flicker frequency and the corresponding amplitude. The sensitivity of the proposed method with respect to the main frequency drift is very low. The proposed algorithm is evaluated by simulations. The validity of the simulations is proven by the implementation of the algorithm with an ARM microcontroller-based digital system. Finally, its function is evaluated with real-time measurements.

      • SCIESCOPUSKCI등재

        Novel Voltage Source Converter for 10 kV Class Motor Drives

        Narimani, Mehdi,Wu, Bin,Zargari, Navid Reza The Korean Institute of Power Electronics 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This paper presents a novel seven-level (7L) voltage source converter for high-power medium-voltage applications. The proposed topology is an H-bridge connection of two nested neutral-point clamped (NNPC) converters and is referred to as an HNNPC converter. This converter exhibits advantageous features, such as operating over a wide range of output voltages, particularly for 10-15 kV applications, without the need to connect power semiconductors in series; high-quality output voltage; and fewer components relative to other classic seven-level topologies. A novel sinusoidal pulse width modulation technique is also developed for the proposed 7L-HNNPC converter to control flying capacitor voltages. One of the main features of the control strategy is the independent application of control to each arm of the converter to significantly reduce the complexity of the controller. The performance of the proposed converter is studied under different operating conditions via MATLAB/Simulink simulation, and its feasibility is evaluated experimentally on a scaled-down prototype converter.

      • KCI등재

        Modeling of the solubility of H2S in [bmim][PF6] by molecular dynamics simulation, GA-ANFIS and empirical approaches

        Amir Dashti,Farshid Zargari,Hossein Riasat Harami,Amir H. Mohammadi,Zahra Nikfarjam 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.10

        Predicting the solubility of acid gases in ionic liquids (ILs), has lately appeared as advantageous for natural gas purifying, which is equipped by powerful models considering technical and economic aspects. Important issue in the assessment of ILs for potential utilization in gas sweetening process is estimating the H2S solubility at various temperatures and pressures Experimental measurements are costly and take considerable time and effort. As a result, proposing methods for predicting the behavior of this system over a wide range of conditions is vital. In this regard, molecular dynamics simulation (MD) technique as well as artificial intelligence knowledge of hybrid genetic algorithmadaptive neuro fuzzy inference system (GA-ANFIS) and an empirical polynomial regression (PR) model were employed to estimate the solubility of H2S in [bmim][PF6] IL. Pressure and temperature are considered as the independent input variables and H2S solubility as the dependent output variable. The results of this study reveal that the simple fourthorder PR model and GA-ANFIS have the highest accuracy. As a result of the simplicity and accuracy of PR model, it can be used without any prior knowledge about MD and artificial intelligence (AI). According to the accuracy and precision of model proved by the obtained result, the solubility of H2S in ILs has been estimated. The results show that the PR method is more trustworthy than other models.

      • SCIESCOPUSKCI등재

        Novel Voltage Source Converter for 10 ㎸ Class Motor Drives

        Mehdi Narimani,Bin Wu,Navid Reza Zargari 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This paper presents a novel seven-level (7L) voltage source converter for high-power medium-voltage applications. The proposed topology is an H-bridge connection of two nested neutral-point clamped (NNPC) converters and is referred to as an HNNPC converter. This converter exhibits advantageous features, such as operating over a wide range of output voltages, particularly for 10–15 ㎸ applications, without the need to connect power semiconductors in series; high-quality output voltage; and fewer components relative to other classic seven-level topologies. A novel sinusoidal pulse width modulation technique is also developed for the proposed 7L-HNNPC converter to control flying capacitor voltages. One of the main features of the control strategy is the independent application of control to each arm of the converter to significantly reduce the complexity of the controller. The performance of the proposed converter is studied under different operating conditions via MATLAB/Simulink simulation, and its feasibility is evaluated experimentally on a scaled-down prototype converter.

      • KCI등재

        Novel Voltage Source Converter for 10 kV Class Motor Drives

        Mehdi Narimani,Bin Wu,Navid Reza Zargari 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This paper presents a novel seven-level (7L) voltage source converter for high-power medium-voltage applications. The proposed topology is an H-bridge connection of two nested neutral-point clamped (NNPC) converters and is referred to as an HNNPC converter. This converter exhibits advantageous features, such as operating over a wide range of output voltages, particularly for 10–15 kV applications, without the need to connect power semiconductors in series; high-quality output voltage; and fewer components relative to other classic seven-level topologies. A novel sinusoidal pulse width modulation technique is also developed for the proposed 7L-HNNPC converter to control flying capacitor voltages. One of the main features of the control strategy is the independent application of control to each arm of the converter to significantly reduce the complexity of the controller. The performance of the proposed converter is studied under different operating conditions via MATLAB/Simulink simulation, and its feasibility is evaluated experimentally on a scaled-down prototype converter.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼