RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Green Synthesis of Silver Nanoparticles by Tannic Acid with Improved Catalytic Performance Towards the Reduction of Methylene Blue

        Yueyue Hao,Nan Zhang,Jing Luo,Xiaoya Liu 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2018 NANO Vol.13 No.1

        In this work, a facile, environmental-friendly and cost-effective method was developed to prepare silver nanoparticles (Ag NPs) in aqueous solution at room temperature. In our approach, tannic acid was employed as the reducing agent and stabilizer simultaneously, avoiding the usage of any toxic agent. The tannic acid derived silver nanoparticles (TA-Ag NPs) were fully characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analyzer (TGA). The particle size of the synthesized TA-Ag NPs is tunable from 6.5 nm to 19.2nm with narrow distribution by varying the molar ratio of TA to silver precursor. Efficient reduction of methylene blue (MB) catalyzed by TA-Ag NPs was observed, which was dependent upon the particle size of TA-Ag NPs or the TA concentration used for synthesis. By optimizing the TA concentration, complete reduction of MB was accomplished by TA-Ag NPs within 8 min. The high catalytic activity of TA-Ag NPs was attributed to their nanosize and good dispersity as well as the electrostatic interaction between TA and MB which induces rapid enrichment of MB towards TA-Ag NPs, creating a locally concentrated layer of MB. Considering the facile and environmental-friendly preparation procedure and excellent catalytic activity, TA-Ag NPs are green, efficient and highly economical candidates for the catalysis of organic dyes and extendable of other reducible contaminants as well.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼