RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Sandwich Structure Electrode as Advanced Performance Anode for Lithium-Ion Batteries

        Wei Chengcheng,Sun Xiaogang,Liang Guodong,Huang Yapan,Hu Hao,Xu Yuhao 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.10

        In this work, a sandwich structure electrode was prepared by a simple vacuum filtration and rolling process. The SEM showed that the active materials were uniformly embedded in the pores of the three-dimensional conductive network of the carbon nanotube (CNTs) conductive paper. The contact interface area of active material and the conductive network significantly increased and the interface resistance was greatly reduced. The porous anode can accommodate the volume expansion of the silicon and effectively alleviated pressed during cycle. The electrode also exhibited good stability in cycles. Electrochemical tests showed that the first discharge specific capacity of the sandwich electrode reached 2330 mAh/g with a coulombic efficiency of 86%. After 500 cycles, the specific capacity was still maintained at 1512 mAh/g. At a large current density of 2 A/g, the specific capacity hold was 840 mAh/g compared with the copper foil electrode of 100 mAh/g.

      • KCI등재

        Electrochemical Properties of Supercapacitors Using Boron Nitrogen Double-Doped Carbon Nanotubes as Conductive Additive

        Hao Hu,Xiaogang Sun,Wei Chen,Jie Wang,Xu Li,Yapan Huang,Chengcheng Wei,Guodong Liang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.7

        Carbon nanotubes (CNTs) were doped by ammonium borate as the sources of nitrogen and boron. Under the protection of Ar gas, boron-nitrogen doped CNTs were prepared through nitriding and boronization at high temperature. It is a conductive additive. Then, the obtained CNTs were mixed with activated carbon (AC), SP, sodium dodecyl sulfate (SDS), and cellulose fiber to prepare electrodes. With all the materials, a symmetric electric double-layer supercapacitor (EDLC) was assembled. Next, the materials and electrodes were also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The factors, chemical connections, and specific surface area of the CNTs were analyzed by X-ray energy spectrum analysis (EDS), X-ray photoelectron spectroscopy (XPS), as well as a specific surface area and porosimetry analyzer (BET). In addition, the electrochemical performances of electric double-layer capacitors were tested with the help of cyclic voltammetry, constant-current charging and discharging, and so on. From the results, we can make a conclusion, that is, both B and N atoms were added into the CNTs and formed bonds successfully with carbon atoms mutually. Besides, the specific surface area is about 1.5 times than that of the CNT. When the charge/discharge current density reaches 50 mA/g, we can find that the mass specific capacitance of the capacitor can run up to 32.19 F/g. Also, we observe that the maximum power density is close to 220 W/kg (700 mA/g), and the energy density can arrive 9.31 Wh/kg (50 mA/g). Based on the impedance test, the electrodes are characterized with low impedance. After 2000 cycles, the boron-nitrogen doped double-layer capacitors maintain a capacitance retention ratio of above 95%. Its power density can still achieve 220 W/kg when the energy density keeps at 3.46 Wh/kg. In other words, the electrochemical performance functions of the electric double-layer capacitors are enhanced while the CNTs serve as the electrodes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼