RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enhanced Acetoin Production by Serratia marcescens H32 Using Statistical Optimization and a Two-stage Agitation Speed Control Strategy

        Jianan Sun,Liaoyuan Zhang,Ben Rao,Yunbin Han,Ju Chu,Jiawen Zhu,Yaling Shen,Dong-Zhi Wei 한국생물공학회 2012 Biotechnology and Bioprocess Engineering Vol.17 No.3

        Enhanced acetoin production was carried out by Serratia marcescens H32. First, medium compositions were optimized statistically for shake flask fermentations to produce acetoin. Sucrose and corn steep liquor powder (CSLP) were identified as the most significant factors by Plackett–Burman design. The path of steepest ascent and response surface methodology were then employed to determine the optimal concentrations of the two factors. Acetoin yield was up to 41.5 g/L in flask fermentations using the optimized medium. Furthermore, the optimal medium was used to conduct fermentation experiments in a 3.7-L bioreactor. The influences of different agitation speeds on acetoin production were investigated. Based on a process analysis, a two-stage agitation speed control strategy was proposed, in which the agitation speed was controlled at 700 rpm during the first 8 h and then switched to 600 rpm. A relatively high acetoin concentration (44.9 g/L)and high acetoin productivity (1.73 g/L/h) were achieved by applying this strategy. Fed-batch fermentation based on the two-stage agitation speed control strategy was performed,and a maximum acetoin concentration of 60.5 g/L with productivity of 1.44 g/L/h was achieved. Enhanced acetoin production was carried out by Serratia marcescens H32. First, medium compositions were optimized statistically for shake flask fermentations to produce acetoin. Sucrose and corn steep liquor powder (CSLP) were identified as the most significant factors by Plackett–Burman design. The path of steepest ascent and response surface methodology were then employed to determine the optimal concentrations of the two factors. Acetoin yield was up to 41.5 g/L in flask fermentations using the optimized medium. Furthermore, the optimal medium was used to conduct fermentation experiments in a 3.7-L bioreactor. The influences of different agitation speeds on acetoin production were investigated. Based on a process analysis, a two-stage agitation speed control strategy was proposed, in which the agitation speed was controlled at 700 rpm during the first 8 h and then switched to 600 rpm. A relatively high acetoin concentration (44.9 g/L)and high acetoin productivity (1.73 g/L/h) were achieved by applying this strategy. Fed-batch fermentation based on the two-stage agitation speed control strategy was performed,and a maximum acetoin concentration of 60.5 g/L with productivity of 1.44 g/L/h was achieved.

      • KCI등재

        An Auto-inducible Expression System Based on the RhlI-RhlR Quorum-sensing Regulon for Recombinant Protein Production in E. coli

        Rao Ben,Fan Jiying,Sun Jian’an,Truong Ngoc Tu,Sun Jing,Zhou Jingsong,Qiuyi,Shen Yaling 한국생물공학회 2016 Biotechnology and Bioprocess Engineering Vol.21 No.1

        An artificial network which can accomplish recombinant protein synthesis guided by cell population in E. coli was constructed. The successful functioning of this network requires two plasmids, pWNB and pET. pWNB is responsible for production of T7 RNA polymerase, which controls pET; pET, in turn, regulates the production of target proteins. Several model proteins were tested and the results show that this E. coli system can be used to efficiently express various recombinant proteins. Since system contains T7 RNA polymerase production elements, it is transferable and applicable to well-characterized E. coli strains. Compared to the IPTG-induced system, an equal or greater amount of target protein can be obtained using this auto-inducible expression system in flasks and bioreactors. Our results suggest that it is a competitive alternative to other expression systems used in labs or for industrial applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼