RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Partition-based 3 + 2-axis tool path generation for freeform surface machining using a non-spherical tool

        Hao Jiancheng,Li Zhaoyu,Li Xiangyu,Xie Fubao,He Dong,Tang Kai 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.5

        When machining a complex freeform part, using a non-spherical tool could significantly improve the machining efficiency, as one can adaptively adjust the tool posture to maximize its contact area with the part surface. However, since adjusting the tool posture requires changing the tool orientation, a five-axis machine tool is needed, which is extremely expensive as compared to a conventional three-axis machine tool. Moreover, for a complex freeform surface with high curvature variation, to match its curvature change, the tool axis has to drastically change accordingly, thus inducing high velocity and acceleration on the machine tool’s rotary axes. To address these issues, in this paper we propose a partition-based 3 + 2-axis strategy for machining a general complex freeform surface with a non-spherical tool. As only a finite small number of distinct tool orientations are needed for 3 + 2-axis machining, an indexed three-axis machine tool suffices, thus relieving the need of an expensive five-axis machine tool. In addition, the much-increased rigidity of the three linear axes of the machine tool will greatly improve the kinematics and dynamics of the machine tool and thus enhance the machining accuracy. Experiments in both computer simulation and physical machining are carried out, whose results confirm that, when compared to using a conventional spherical cutter, by using a non-spherical cutter and adaptively adjusting the contacting tool posture and the feed direction, significant improvement in machining efficiency could be achieved, e.g., more than 50% achieved in our experiments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼