RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A New Analytic Solution to Determine Internal Load of Small Span Suspension Bridge

        Wen-jie Niu,Hai-tao Yu 대한토목학회 2016 KSCE JOURNAL OF CIVIL ENGINEERING Vol.20 No.4

        Until now, no available analytic solution considering suspender deformation was given to determine cable tension load at the middle of cable and suspender internal load of suspension bridge. Firstly, the classical theory without suspender deformation was taken to study the sag effect on the internal load of suspension bridge. Results indicate that the tension load at all cable points decreases when the sag increases. A procedure using Müller-Breslau principle to determine the moment and shear force influence line of the stiffening girder in the wire suspension bridge was given, and validated by the influence line given by the classical theory. Secondly, a new analytic solution considering suspender deformation was given to determine cable tension load at midpoint and the internal load of suspenders. The new analytic solution is more reasonable than the classical theory in theory. According to the new analytic solution, the cable tension load gets peak value when the unit live load Pi applies at the middle of stiffening girder, while the internal tension loads in all suspenders reach equal maximum value. Then a linear static model was built in ANSYS ignoring large displacement, initial strain and Ernst’s modulus of elasticity. Results using the new analytic solution compare well with benchmark simulations from ANSYS. So, the proposed analytic solution is a quick and easy way to approximately determine the internal load of small span suspension bridge.

      • KCI등재

        Response Mechanism of Mechanical Behavior with Mg Plate Microstructure Evolution During Al/Mg/Al Composite Plate Rolled by Hard Plate

        Rong He Gao,Feng Li,Wen Tao Niu,Peng Da Huo 대한금속·재료학회 2023 METALS AND MATERIALS International Vol.29 No.7

        The long manufacturing process, difficult coordinated regulation of structural properties and interface bonding ability aresome of the difficulties that restrict the rapid development of lightweight composite plate forming and manufacturing for along time. In order to solve the above problems, this paper proposes adding hard plate to roll Al/Mg/Al composite plates. The thickness of Mg/Al is 10:1, and the hard-plate rolling process experiments were carried out by designing five groupsof different temperatures. The influence of magnesium plate microstructure evolution on the interface bonding ability andmechanical behavior of composite plates is mainly studied. Under the same conditions, the matrix microstructure changesgreatly from 200 to 350 °C. At 350 °C, the microstructure of Mg plate in ND is uniform without shear bands and twins. Itsrecrystallization ratio is 31.77%, which played a role in weakening the texture and reducing its anisotropy. Interestingly,in the process of three-point bending, the non-basal plane slip and the basal plane slip start simultaneously, the maximumbending strength of the composite plate reaches 504 MPa, and the interface was well bonded without obvious bending fatiguephenomenon. The tear test showed that the tear load reaches 0.42 kN, and the elastic elongation stage of Al is longer than thetear propagation stage, and the interface bonding was uniform. The hard plate rolling process provides scientific guidancefor the forming and preparation of composite plates.

      • An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators

        Zhai, Cong,Chou, Xiujian,He, Jian,Song, Linlin,Zhang, Zengxing,Wen, Tao,Tian, Zhumei,Chen, Xi,Zhang, Wendong,Niu, Zhichuan,Xue, Chenyang Elsevier 2018 APPLIED ENERGY Vol.231 No.-

        <P><B>Abstract</B></P> <P>There is plenty of exploitable energy in the ambient environments. Triboelectric nanogenerator is an innovative electricity generation technology to convert the wasted mechanical energy into electrical energy. However, the output of conventional triboelectric nanogenerators cannot be employed efficiently because their tremendous internal resistance limits the current of electrons. Inspired by the principle of lightning rods, for the first time we propose the utilization of electrostatic discharge to improve the performance of triboelectric nanogenerators, which is realized by an opposite needles structure enclosed in an inert atmosphere. When this structure is connected in series with a vertical contact-separation triboelectric nanogenerator, the strong electric field near tips of two needles ionizes the gas around them, forming a conductive plasma channel between the tips, and releasing a mass of free charges. As a result, some exciting performances are obtained in triboelectric nanogenerator. The output peak-to-peak voltage is increased from 300 V to 1300 V, and the equivalent impedance of energy harvesting circuit is reduced from 100 MΩ to 10 kΩ. Especially in the optimal conditions, the maximum continuous power can even be significantly improved by 330.76%. Therefore, this work provides a new strategy for the energy conversion technology, which is significant for the advancement and application of triboelectric nanogenerators.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A strategy is proposed to improve the performance of triboelectric nanogenerators. </LI> <LI> The maximum continuous power can be boosted dramatically by electrostatic discharge. </LI> <LI> This design reduces the optimal impedance that is important for circuit matching. </LI> <LI> With this design triboelectric nanogenerators can directly drive low-power devices. </LI> <LI> This work is also significant for macro-energy conversion, such as ocean energy. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼